Pharmacology
Handwritten Note

Name: _______________________________________

Subject: __________________________ Pharmacology

Website: http://mbbshelp.com
Website: http://www.youtube.com/mbbshelp
Website: http://www.facebook.com/mbbshelp.com
Website: http://mbbshelp.com/whatsapp

Website: http://mbbshelp.com
Website: http://www.youtube.com/mbbshelp
Website: http://www.facebook.com/mbbshelp.com
Website: http://mbbshelp.com/whatsapp
PHARMACOLOGY

- Sympathetic System Neurotransmitter - Nor-Epinephrine
 → Thoraco-lumbar outflow (T1 to L3)
- Parasympathetic System Neurotransmitter - Acetyl choline
 → Cranio-sacral outflow (III, IV, IX, X, S2, S3, S4)

Cholinergic drug:

Choline uptake → Na⁺-Choline Symport
 → 1st step → Rate limiting step in synthesis of Ach.
 # Source of choline → Serine.

\[\text{Cholin} \xrightarrow{\text{Sodium}} \text{Choline} \xrightarrow{\text{Acetyl CoA}} \text{Ach} \]

Ca²⁺ channel
with the help of Ca²⁺ Ach Release.

 Vesicular uptake of Ach
 \[\text{Ach} \xrightarrow{\text{Vesicle}} \]
 \[\text{Choline esterase} \xrightarrow{\text{Ach}} \]

Muscarnic Nicotinic

True cholinesterase → +nt at synapse:

Pseudocholinesterase → +nt in plasma.

Cholinergic drug metabolised by Pseudocholinesterase.

Choline uptake inhibited by → Hemicholinium.

Vesicular uptake up of Ach blocked by → Vesamicol.

Release of Ach modulated by < blocked by - Botulinum toxin
 Stimulated by - Spider Venom.

Defect in Ca²⁺ Channel - Lambert Eaton Syndrome.
Lambert-Eaton Syndrome:
Defect is Ca\(^{2+}\) channel Presynaptically.
For t/t we need Ca\(^{2+}\) channel actuator → 3,4-diaminopyridine
(Dalfampridine)

Also useful for t/t of
- Multiple Sclerosis
 to improve walking capacity.
- It is K\(^{+}\) channel blocker & Ca\(^{2+}\) channel activator.

Sites of Release of Ach Neurotransmitter:
- at the 1) Ganglion
 - Preganglionic fibre of sympathetic & parasympathetic Release Ach at ganglion.
 2) Adrenal Medulla.
 3) Neuromuscular junction.
 4) Postganglionic Parasympathetic fibre.

Postganglionic sympathetic fibre normally releases
 - Nor-epinephrine (NE)

Exception:
a) Sweat gland - Release Ach (Sympathetic cholinergic)
 # Hyperhydrosis (Excessive Sweating)

 t/t < Sympathectomy
 Botulinum toxin injection.

b) Renal blood flow - Release Dopamine by Sympathetic postganglionic fibre.
Extra point:

1. Conversion of NA into Adrenaline by Methylation
 - Eg. of Phase II reaction

2. Conversion of Histamine into methyl histamine by Methylation
 - Mast cell secretes histamine
 - Mastocytosis (Histamine releasing tumour)

 Urinary estimation of Methyl histamine - Useful for diagnosis of Mastocytosis

 * Urinary estimation of VMA (Vanillyl Mandelic Acid) - Useful for diagnosis of Pheochromocytoma

Toxins in ANS:

Botulinum Toxin — A to G Subtype

Clinical uses of Botulinum A toxin:

1. Blepharospasm
2. Strabismus
3. Wrinkle (in forehead corrected)
4. Cosmetic

Clinical uses of Botulinum B toxin:

- Used as muscle relaxant.
 - Cervical dystonia (Painful muscle spasm)

Onabotulinum Toxin

- Derivative of Botulinum A toxin

 Useful for —
 1. Prophylaxis of Chronic Migraine
 2. Relaxation of Detrusor muscle - Given intravesically

 Causing Retention of urine

 So useful for t/t of overactive bladder
Alpha Bungaroloxin:
- Component of venom of Banded Krait
- Nature of toxin - Antagonistic action at Nm receptor

Saxitoxin
-> Both released by Dinoflagellates (Algae)

Tetradotoxin
-> This toxin infect a fish (shell fish)

Ingested by human - cause Na+ channel blockage, causing Muscle Paralysis.
So, called Paralytic shell fish poisoning.

T/t of α-Bungaroloxin:
- Neostigmine & Atropine

↑ Ach in synapse
- We need only nicotinic action,
we don't need muscarinic action.
- So, muscarinic blocker given.

Muscarinic
- M1, M2, M3, M4, M5
- All muscarinic are
 G-coupled protein receptor
 gated.

Nicotinic
- NM, NN
- All nicotinic are ligand
 gated.

Cholinceptors:

Muscarnic

Nicotinic

Adenylyl cyclase pathway
- Gs → Stimulatory
- Gi → Inhibitory

Phospholipase pathway
- 2 improv. And Messenger
- IP3
- DAG.
Adenylyl cyclase Pathway:

2nd Messenger — CAMP.

M1, M3 & M5 follow Gq pathway
M2 & M4 follow Gi pathway.

Muscarinic Receptors:

M1: Location — Gomach
Action: Releasing Hcl

Overstimulation of M1 — Gastritis

Selective M1 agonist — Oxotremorine.

⇒ GE — Gastritis

For Gastric ulcer — Block M1.

Selective M1 antagonist (PIRENZEPINE) — For ty of

TELENZEPINE — gastric ulcer.

M2: Located on Myocardium

⇒ Maximally in AV node.

Action: Stimulation of M2 causes reduction in conduction

Causing Bradycardia
as Vagus (X) fibre is Parasympathetic fibre

⇒ act on M2 receptor — Causes Bradycardia.

Athleteic person — High Vagal tone

Vagomimetic drug — Causing Bradycardia

Use of M2 agonist — SVT (Supraventricular Tachycardia).

Selective M2 agonist — METHACHOLINE (< 98-99% — M2

1-2% — M1, M3

Selective M2 antagonist — METHOTRAMINE

TRIPITRAMINE

Methacholine challenge test — Δ of Asthma.

⇒ Cause bronchoconstriction.
Digoxin = Vagomimetic property
 - Anti-arrhythmic

 Atrial Fibrillation
 Atrial Flutter
 - Inhibit Na⁺ - K⁺ ATPase test.
 - Accumulate intracellular Ca²⁺ (↑ Ca²⁺)
 - ↑ Force of contraction
 - Useful for t/t of low output CCF.

Muscarnic Receptors:
 M₃ Receptor - Location:

 Smooth muscle - Blood vessel (endothelium)
 Eye
 Endocrine glands.

Smooth muscle

Vascular Visceral
 - Endothelium - M₃ antagonist (COPD/BA)
 ↓
 Vasodilation - Edrophonium bromide
 Hypotension - We don't use Atropine 6oz
 - Selectivity
 - Don't interfere mucociliary muscle.

 - Intestine & Bladder
 - Prokinetic action

M₃ agonist: Uses
 - Constipation
 - Post op paralytic ileus, urinary retention.
Selective M3 agonist acting on Intestine & Bladder
→ BETHANECHOL

Selective M3 agonist acting on GIT & Bladder
- DARifenacin
- SOLifenacin
- Useful for the treatment of diarrhea &
diarrheal dominant IBS.
Overacting bladder.

Selective M3 agonist acting only on Bladder
- Vesico Selective M3 agonist
 - Oxybutynin
 - Tolterodine
 - Solifenacin (Prodrug)
 - Trospium Chloride

Extra information on bladder:
- Nn. Action - Relax detrusor - causing urinary retention
 ↓
 - MIRABEGRON (M3 agonist)
 → Use - Overactive bladder.

Location of M3 mostly in adipose tissue
- SUBUTRAMINE (M3 agonist)
 - Adipolysis (wt. loss)
 - At is withdrawn - Cause Cardiotoxicity.

Nocturnal enuresis
- Opiopramine (TCA)
 - Anti cholinergic
DOC: Desmopressin
V₂ analogue - Vasopressin

Stress incontinence:

\[t/t \rightarrow \text{Duloxetine} \]

- ↑ urethral tone
- Also useful for t/t
 - Chronic neuropathy pain
 - Fibromyalgia.
- It is SNRI (Anti-depressant)

\[\downarrow \]

eg: Duloxetine

Venlafaxine (S/E - Sustained H:\N)
Mirtazapine
Leva-mirtazapine
Vilazodone
Vortioxetine \(\text{Newer drug} \).

M₃ on Eye:

- Sphincter muscle: Stimulation of M₃
- Constrictor: Constriction of pupil \(\text{(Miōδīs)} \)
- Radial muscle: Stimulation of a₁:
 - Dilator
 - Mydriasis
 \(\rightarrow \text{On Radial muscle} \)

\(\text{M₃ agonist acting on eyes} \)
- Pilocarpine
- Ecothiopate
 - Organophosphorus Comp₉
 - Irreversible cholinesterase inhibitor
α, agonist acting on eyes:
- Phenylephrine
 (Adrenergic agonist)

Adrenergic drugs - Only Mydriasis

Anticholinergic drugs - Mydriasis + Cycloplegia
 (loss of light reflex)

β-blocker don't alter pupil size
 Timolol - Use in 4º of Glaucoma.

Oculomotor Nerve supplies constrictor muscle.
 (Circular muscle).

Causes Miosis.

Injury - Mydriasis
 Even after CN III nerve injury if we use pilocarpine
 we will get miosis, as receptors are intact.

M3 receptor agonist - Useful for glaucoma.
 Pilocarpine - Useful for glaucoma by promoting
 drainage

 Ecothio phate - ¼º - Cataract.

Mydriatic anticholinergic:
 Atropine (longest acting = 10wk)
 Homatropine
 Cyclopentolate
 (M/C) Tropicamide (fastest but shortest acting = 5-6hr)

> GI - Glaucoma.
Only for fundus exam - Mydriasis enough

Phenylephrine preferred

Or

Tropicamide.

Error of Refraction:

- Mydriasis & Cycloplegia
- DC - Tropicamide

- In child < 5yr
 - Atropine ointment 1%

M3 on exocrine glands:

M3 location - Salivary gland

Lacrimal gland

Sweat gland

M3 agonist: Pilocarpine

Cevimeline

Sjogren syndrome - Pilocarpine used

Xerostomia

Amifostine - Radio protective

Antidote for Cisplatin

[\text{\text{SE - Nephrotoxicity.}}]

Radio sensitizer - Gemcitabine, Methotrexate

Radiation Recall - Dactinomycin, Doxorubicin

Anti cancer antibodies
Gemcitabine:

Pyrimidine anti-metabolite

DOC - Pancreatic Cancer.

Atropine - C/I in hyper/hernia

Nicotinic Receptors:

Nm & Nn

Nm:

N = Nicotinic, m = Skeletal muscle

1. Activation of Nm causes opening of Na⁺ & Ca²⁺ channel.
2. Entry of Ca²⁺ causes contraction of muscle.
3. (Muscle depolarisation)

Ach - ↑ muscle power

So, Cholinergic drugs used for ↑ for Myasthenia gravis.

Skeletal muscle Relaxation (SMR):

Q₃-Tubocurarine = Competitive antagonist.

→ Non depolarizing SMR.

For reversal - Neostigmine & Atropine

Newer drug - Sugammadex

Useful for Reversal of Rocuronium & Vecuronium.

• Similar to Neostigmine
Non-depolarizing SMR

Steroidal Non-Steroidal

Pancuronium Rocuronium Rapacuronium Vecuronium

Anticholinergic action
(OT) Anti-Vagal

Glycopyrrolate: Anti-Cholinergic agent

Useful for preanaesthetic medication to control secretion.

It is quaternary amine - lipid insoluble.
So, no CNS side effect. So it is useful instead of Atropine.

Rocuronium:
- Fastest acting SMR
- Alternate to Succinyl choline (ScCh) for tracheal intubation
- Least histamine releasing property
- Severe pain during injection

Rapacuronium:
- Cause Severe Bronchospasm

Vecuronium:
- Preferred in cardiac pts.
Benzyl isoquinoline

Doxacurium Mivacurium Atrocurium a-Tubocurarine
- longest acting (120 min) - Shortest acting
- Most potent (15-20 min) - Hoffman's Releasing
- Useful for drug degradation - Adverse effect
- Care: SX. - Self metabolism
- Hypotension

Gantacurium metabolise out
(5-10 min) - Liver & Kidney

Newer drug - They do not need enzyme
- for degradation
- Safe in Hepatic
- Renal failure
- Produce by product

Laudanosine (Causes - Seizure)

Cis Atracurium - Less Laudanosine
Less secreting histamine

SMR having less histamine releasing property
- Cis Atracurium
- Rocuronium
Depolarising SMR:

succinylcholine (SCh):

structurally & functionally - similar to ACh.

5-10 - Muscle fasciculation

post op: muscle pain

• shortest acting (3-5 min)

rapidly undergo metabolism by pseudocholinesterase.

Some people have atypical pseudocholinesterase

• action < 5 min

lead to SCh apnea

1/4 fresh blood transfusion bcz blood plasma

is rich in pseudocholinesterase.

Doxucaine number:

useful to assess whether the pt. have atypical

pseudocholinesterase or normal.

cause - local anesthetic agent.

80% - hydrolysis - normal pseudocholinesterase.

<20% - hydrolysis - atypical

Adverse drug effect of SCh:

- hyperkalemia (Burns, nerve injury, crush injury

- Malignant hyperthermia

- ↑ intra ocular/gastric pressure

those who are having genetic abnormality to

Ry anadine receptor.
Primaquine – Causes hemolysis only in G6PD deficiency.

Pharmacogenic/Idiosyncrasy – Renin Receptor

Occurs disease in only genetic abo person.

3/7 → Dantriolene

(Directly acting SMR)

DOC for: Malignant hypothermia
Neuroleptic malignant syndrome.

SMR – causes pain on injection – Rocuronium.

GA causing pain → Propofol
Post- op muscle pain – Sux

Analgesic used during sx causing Post-op truncal rigidity – Fentanyl, Alfentanil

T/t – Wooden chest syndrome.

Antibiotics causing SMR:

- Aminoglycosides (Maxim) – Neomycin
- Macrolides
- Quinolone
- Tetracyclines

Aminoglycosides – Inhibit Release of Acch

Similar to Botulism toxin.

T/t – Neostigmine + Calcium:
Autonomic ganglia

Sympathetic:

- Preganglionic (Ach, NN)
- Post-ganglionic (NE)

Parasympathetic:

- Preganglionic (Ach, NN)
- Post-ganglionic

Ganglia

<table>
<thead>
<tr>
<th>Ganglionic Blockers (NN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexamethonium</td>
</tr>
<tr>
<td>Trimethaphine</td>
</tr>
<tr>
<td>Mecamylamine (Smoking Control)</td>
</tr>
</tbody>
</table>

Useful to produce controlled hypotension.

Antismoking drugs:

First line drug (therapy):

- Varenicline ($\alpha_4\beta_2$ nicotinic agonist) - Suicidal thought
- Nicotine (patch, inhaler, lozenges, chewing gum)
- Bupropion - NBRI (Norepinephrine Dopamine Reuptake Inhibitor)
 - Antidepressant
 - Adverse drug reaction
 - Weight loss
 - Seizure
 - ADHD (off-label)

Second line therapy:

- Clonidine (α_2 agonist)
- Nortriptyline (TCA)
ADR = Adverse Drug Reaction

Miscellaneous:

- Rimonabant
 - Topiramate - Antiepileptic
 - ADR - Weight loss, Nephrotic syndrome

Mecamylamine

Rimonabant: Inverse agonist/Agonist of Cannabinoid receptor.

- Weight loss
- Prevent craving of alcohol

ADR - Psychiatry problems (withdraw)

ADHD (Attention deficit hyperactivity disorder):

Drug used - Amphetamine

Causes - Cardioxic
- Addiction
- Appetite suppressant
 (Failure of growth)

First line drugs:
- Methylphenidate (First choice)
- Atomoxetine
 - Ritalinic acid (Metabolite)

Other drugs:
- PB: Pemoline (Hepatotoxic)
- Modafinil - Use: Narcolepsy
 - Shift worker
 - Obstructive sleep apnea
 - ADHD (FDA - Unapproved)
Newer drug under Narcolepsy:

H₃ inverse agonist

Pitolisant OR Tiprolisant

Narcolepsy (Orphan drug status)

Drug useful for tip of obesity:
- Selulimine (β₃ agonist) - Cardio toxic (Withdrawn)
- Orlistat (lipase inhibitor) - Steatorrhea
- Olestra (Sucrose polyester) - Cooking medium.
- Rimonabant (Cannabinoid 1 antagonist) - Withdrawn
- Leptin (Endogenous slimming peptide)

Combination therapy:
- Bupropion + Naltrexone (opioid antagonist)

- Bupropion + Zonisamide (Antiepileptic)

- Phenteramine + Topiramate (Antiepileptic)
 (Sympathetic Stimulant)
 (Causing Causing
 Appetite Suppressant)

Newer drug: SHTRC agonist - LORCASERIN

S/E - Serotonin Syndrome

GLP-1 → LIRAGlutide

FDA approved drug for obesity.

Extra point: Antiepileptic causing wt. loss
- Topiramate
- Zonisamide
- Felbamate
Antiepileptic causing Wt. gain:
 * Sodium Valporate
 * Gabapentin

Felbamate < Hepatic failure (ye)
 Aplastic Anemia

Type 2 DM o obesity — 1st line drug — Metformin
 Non-diabetic o obesity — NO Metformin.

Antidiabetic Causing:
 Weight gain: — Insulin, Insulin secretagogues
 — Sulfonyl ureas, meglitinides,
 Thiazolidinediones.

 Weight loss — Pramlintide, GLP-1 agonist, SGLT2 inhibitors

 Weight neutral — Metformin, DPP4 inhibitors.
ANTI CHOLINESTERASE

Reversible
- Carbamalei
- Acridine
- **OPCs**
- Carbamalei

Irreversible
- Physoestigmine (Natural origin)
- Tacrine
- Pyrifos
- Carbaryl

- Alkaloid (plant)
- Hepatotoxic
- Parathion
- (Baygen)

- Highly lipid soluble
- So, not used
- Malathion
- Insecticide
- In Alzheimer
- Diazinon

DOC: Atropine
- Poisoning
- (Belladona)

- Neostigmine
- Malathion – Pediculosis (lice)
- Malathion – Lice infestations
- Echothiophate – Use in Glaucoma
- S/E Cataract

- Neo - direct action
- on NM receptor

- Pyri - long acting
- Rapid dissociation

- Eecho - Atrionic site binding

- Used for A of myasthenia gravis.

- (Benailou test
- or, Augliorative test)

- Provocative test
 (done by injecting
 1- Tubocurarine)

 # Aging of enzyme
 - Jabun (Slow)
 - Sarin (3-5hrs)
 - Soman (2hrs) - Fastest acting

 t/t - Atropine + Pralidoxime
 In convulsion – Diazepam
Rivastigmine useful for the
donapegol of Alzheimer’s
galantamine deficiency of Ach.

OPC’s poisoning:
Parathion, Malathion, Diazinon
Cholinesterase inhibitors
(Irreversible)

1st line DOC: Atropine (Muscarnic Blocker)

Dose & depends upon sign & symptoms of Atropenisation:
- HR > 100/min
- Pupil Size
- Pulmonary secretion
- Secretion

Max 280 mg

Oximes:
- Cholin Esterase inhibitor reactivation.
- Only used for the OPC’s poisoning not carbamate poisoning.

eg: Pralidoxime (1-2g; slow i.v. 15-30 min)
- Obidoxime (more potent)
- Diacetyl mono oxime (highly lipid soluble)
 → More CNS action

S/E - HTN
→ T/e - Phentolamine (Non-selective & blocker)
Myasthenia Gravis (MG):

- Ameliorative test
- Provocative test

Definitive test → Anti Ach Receptor Radioimmuno Assay.

Confirmatory → Single fibre Electromyography. (SF-EMG)

First line drug — Neostigmine

Pyridostigmine

Others — Corticosteroids

- Thymectomy
- Plasmapheresis
- Intravenous Immunoglobulin (IV Ig)

Other immunosuppressant — Azathioprine

Cyclosporine

Monoclonal antibody — Rituximab

Remission/Exacerbation

Rapid Recovery — Plasmapheresis

IV Ig.

Quinine

- Used in MG
- 3rd line in SMR
- Used in Nocturnal leg cramps.
- Avoid Aminoglycoside in MG.

MEMANTINE - NMDA Blocker
useful for moderate to severe Alzheimer's.

Drug useful in cervical ripening - VACATHAMATE

 Anti-cholinergic drug
 Smooth muscle relaxant.

Diphenoxylate - Opioid
 Anti-diarrheal
 Addiction
 \rightarrow Atropine & addiction of Diphenoxylate

Glycopyrrolate - Anticholinergic
 Preanaesthetic
 Quaternary amine.

Scopolamine - Also K/A Hyoscine → CNS depressant (sedation)
 Used in motion sickness.
 DOC: Hyoscine → Narco Analysis

1st Gen. (H + M): Promethazine
 \rightarrow In treating nausea, motion sickness, treating EPS (extra pyramidal symptoms), allergic conditions, sickness

For Sea Sickness - Same t/t.
 \rightarrow Meclizine - 1st gen long acting anti-histamine.
For Mountain Sickness: Acetazolamide
(Carbonic Anhydrase Inhibitor)

Morning Sickness: Doxylamine & Vit B6

\[\text{antiemetic vitamin}\]

Vit B6 (in Pyridoxine):
- Anti-emetic
- Controls intracerebral seizure

Stimulant of dopa decarboxylase
C/I - Levodopa

Vit B6 should not be given with levodopa.

Vit B6 definitely given & Anti TB drug (isoniazid)

To correct peripheral neuropathy.

Antidote for Vit B6 - 4-deoxy pyridoxine

Folic acid -

Prophylactic - 500 µg daily in pregnancy.

Previous H/O Neural tube defect - 5 mg/day.
Drug having Anticholinergic activity:

- TCAs
 - Amitriptyline
 - Imipramine — Nocturnal enuresis
 - Doc: Desmopressin

- Anti Psychotics
 - Theoridazone
 - Clozapine

- SMR
 - Pancuronium
 - Gallamine

- Class 1a Anti arrhythmie drugs.
 - Quinidine
 - Procainamide
 - Disopyramide (Highest anti cholinergic property).

- 1st H1 Blocker
 - Promethazine

- Anaesthetic
 Meperidine (Pethidine)
 - opioid analgesics
 - Q1 in MI pain

 Morphine is Used.
ADRENERGIC DRUGS

Synthesis, Storage, Release, Metabolism of NE:

\[
\text{Tyrosine} \xrightarrow{\text{TYR}} \text{Tyrosine Hydroxylation} \xrightarrow{\text{DOPA Decarboxylase}} \text{DOPA} \xrightarrow{\text{DOPA Decarboxylase}} \text{Dopamine} \xrightarrow{\text{MAO}} \text{Dopamine} \xrightarrow{\beta \text{-Hydroxylase}} \text{NE} \leftarrow \text{COMT} \xrightarrow{\text{RE- UPTAKE}} \text{NE}
\]

Synthesis of NE → Only in the vesicle.

Catecholamine → Dopamine

NE

Epinephrine

Monoamines → Dopamine

NE

Serotonın

For metabolism of NE – MAO

COMT
- Even though NE undergoes metabolism by MAO & COMT, enzymatic degradation is not involved in termination.

- NE action is terminated by Re-uptake.

- Rate limiting enzyme of Synthesis of NE — Tyrosine Hydroxylase.

- Drug inhibiting Tyrosine hydroxylase — Alpha methyl parathionine (METYROSINE)

- Dopa decarboxylase inhibitor — Carbidopa

- Reserpine — Anti HTN agent
 - Vascular uptake inhibitor.
 - NE — Succidal depression.

- β-hydroxylase blocker — Disulfiram
 (Used in alcoholism deaddiction)

Ethyl alcohol
 ↓ Alcohol dehydrogenase
 Acetaldehyde
 ↓ Acetaldehyde dehydrogenase + Disulfiram
 Acetic Acid
New drug - Droxidopa

- Prodrug of NE
- Used in Neurogenic Orthostatic Hypotension
- Hemodialysis-induced hypotension

Bretyllium: Class 3 drug

- K⁺ channel blocker
- Also called Chemical defibrillator

Release of NE is blocked by - Bretyllium, Guanethidine

NE Re-uptake inhibitor - SNRI, NDRI, TCA, Cocaine

Cocaine - One & only anesthetic causing HTN.
- Causes mydriasis by acting on α₁ on the radial muscle

Adrenergic Receptor: < α

(Henry Ahlquist)

α-Receptor: < α₁ - post-synaptically (location)
- α₂ - pre-synaptically

⇒ Inhibition of release of NE
⇒ auto receptor for NE

α₂ agonist:

eg: Clonidine - Centrally acting Anti HTN
Methyldopa
Guanafacine
Guanabenz
- Mononidine
- Rilmonidine
- Apraclonidine: Useful in Glaucoma.
- Dorzolamide: Inadequate aqueous secretion
- Pitrimidine: Decrease aqueous secretion
- Timolol: Decrease aqueous secretion
- Timolol Maleate: Used as a Sedation (100 units)
- Pre-anesthetic medication

Meldepal: DOC for HTN during pregnancy

Hyperensive Emergency:
- Labetalol (β+α blocker)
- Hydralazine (K⁺ channel opener)
- Arteriolar dilator

Eclampsia — MgSO₄

Meldepal may cause hemolytic anemia to mother
- Coomb's test +ve

Drug avoided in pregnancy: ACEi (Renal & pulm agenesis)
- ARBs
- Sodium nitroprusside (contain cyanide)

Apraclonidine: Specific S/E — Lid lag
- Pilocarpine: S/E — Anterior uveitis
α₂ agonists: Release NE

- **α₁ agonists:**
 - *localization: Post-synaptically*
 - 1. α₁ seen on vascular smooth muscle.

- **α₂ agonists:**
 - Based on vascular action
 - Useful in t/t of Hypotension

 - Nasal congestion

- **Selective α₂ agonists for t/t for Hypotension:**
 - Methoxamine
 - Naphazoline

- **Selective α₁ agonist for t/t for Nasal congestion:**

 - Cause Atrophic
 - Naphazoline
 - Rhinitis
 - Oxymetazoline
 - (Rhinitis medicamentosa)
 - Xylocaine

- **# α₁ Receptor - Radial muscle of iris → Mydriasis**
 - Phenylephrine

- **# α₁ Receptor seen in internal urethral sphincter**
 - Causes sphincter constriction
 - Retention of urine

- **# α₁ blocker used in BPH**
Vesico ureteric junction & Receptor tons.

\(\alpha\) blocker useful in urt of lower ureteric calculi

As seen on Vas deferens of penis.
 Action → Ejaculation.

\(\alpha\) of \(\alpha\) blocker → Impairment of Ejaculation.

Directly acting Sympathomimetic
 \(\alpha,\beta\) agonist
 Adrenaline, NA.

Indirectly acting Sympathomimetic:

 Tyramine → Act on vesicle → Causes release of NE.

 Causes depletion of storage of NE.

 Hyperplasia → Rapid tolerance.

MAO inhibitors taking \(\varepsilon\) Tyramine containing food (cheese, wine, bread) causes HTN, it is called Cheese effect.

 DOC for \(\text{t/f of HTN due to cheese effect: Phenolamine}\)

 (non-selective \(\beta\) blocker)

Mixed action Sympathomimetic → Ephedrine

 causing Hypotension

 Safe in pregnancy.
Selective α1 blocker:

- eg: Prazosin (PDE inhibition property).
- Doxazosin → Apoptotic action on Prostate.
- Terazosin

α1A blocked]

Silodosin
Alfuzosin

mainly Tamsulosin

acting on bladder.

Indoramine → Useful in Hypertensive Emergency.

Urapidil.

PRAZOSIN:

- Vasodilatation → on smooth muscle.

Users - HTN

PVD

CCF

Scorpion Bite.

S/E - Postural hypotension

(1st dose hypotension)

- Impairment of ejaculation.

Selection of Prazosin as Anti-HTN:

1. HTN & dyslipidemia
2. HTN & elderly male with BPH.
3. Can be used in diabetics with HTN.

HTN & dyslipidemia:

Choice - Prazosin

Anti HTN avoided - Non-selective β-blockers

Thiazide diuretics
No problem if → CCB, ACEi, ARB, Clonidine.

HTN if diabetes:

Choice → ACEi = ARB > CCB

Unfavourable (avoid) → β-blocker

Diuretics.

Anti-HTN causing erectile dysfunction —

Highest risk → Diuretics (Thiazides)

High risk → β-blocker (Atenolol, Carvedilol,

In BPH → Static obstruction is overcome by Finasteride + Tamsulosine.

\[\sqrt{\text{Rapid Benefit}} \]

It takes 3-6 months for action.

Tamsulosine overcomes dynamic obstruction.

Pt. on Tamsulosine may cause risk of floppy iris syndrome → going for cataract.
Non-selective α-blocker:

Irreversible - Phenoxybenzamine

Reversible - Tolazoline, Phentolamine.

Phenoxybenzamine:

Definitive therapy for t/t of HTN in Pheochromocytoma
 - Phenoxybenzamine.

For controlling intra-operative HTN during pheochromocytoma Sr
 - i.v. Phentolamine
 - i.v. Nitroprusside.

Don’t use Propanolol as a 1st line drug for t/t HTN due to Pheochromocytoma.

In Pheochromocytoma Sr
 - Drugs like Halothane is O.I.

 ↓

 Sensitize the myocardium for catecholamine

 ↓

 Causes MI.

Phentolamine:

Use – DOC for t/t of Clonidine withdrawal HTN

DOC for t/t of HTN due to cheese recha.

In intra-op HTN during Pheochromocytoma Sr

Oxime induced HTN.

Useful for t/t of Erectile dysfunction (injectable drug)
PIPE Therapy (Pharmacologically induced penile erection):

Injectable drugs used for t/ of erectile dysfunc-

- Alprostadil (PDE1 analogue)
- Phentolamine
- Papaverine (Non-selecting PDE inhibitor).

\[\beta - \text{Receptors} \rightarrow \text{G-protein couple acting via Gs pathway.} \]

\[\beta_1 \rightarrow \beta_2 \rightarrow \beta_3 \]

Location - Myocardium

Action (Heart) → ↑ HR

↑ Force of contraction

↑ CO.

In kidney → Renin release

Selective β agonist:

Dobutamine (Synthetic Catecholamine)

eg of synthetic Catecholamine

1. Isoproterenol → acting on β₁, β₂, β₃
2. Dopexamine → D₁, β₂
3. Dobutamine → β₁ (t₁/₂ = 2min)
4. Fenoldopam → D₁

Dobutamine Used in → Stress ECHO

D₁ receptor seen in Renal blood vessel → Renal Vasodilation
ifenoldopam used iv → iv infusion
- HTN emergency & renal
 impairment.

β₂:
Location: Smooth muscle < Vascular
 Visceral.

Stimulation of β₂ → Vasodilation.

Visceral -
Bronchial muscle → Bronchodilation.

β₂ agonist useful for t/t of Bronchial Asthma:
- Salbutamol > short acting
 Terbutaline useful for Acute asthma.
- Salmeterol
 Formoterol > long acting
 Indacaterol useful for Chronic asthma

Salbutamol:
- M/C S/E - Tremors
 Palpitation.

Uterus → Action → Uterine muscle relaxation.
- Toxolytic – Ritonavir (FDA approved)
 Isoxuprine

β₂ agonist having anabolic action – Clenbuterol.
Phospholipase-Gq $\rightarrow \alpha_1$ - G-Protein Couple receptor
Adenylyl cyclase-Gi $\rightarrow \alpha_2$

β_2 - Role on metabolism

- Carbohydrate
- Potassium
- Lipid
- Hyperglycemia
- Hypokalemia
- Reducing blood cholesterol

Hyperkalemia:
- Mild \rightarrow 5.5 to 6.5 mEq/L
- Moderate \rightarrow 6.5 to 8.0 mEq/L
- Severe \rightarrow > 8.0 mEq/L

For Rapid control of potassium in Hyperkalemia (emergency) - Insulin + Glucose infusion

For Hyperkalemia + ECG abnormalities - Calcium Gluconate

β_3:
- Location: Adipose tissue

Selective β_3 agonist - SIBUTRAMINE
- Lipolysis
- Withdraw due to CardioToxic

MIRABEGRON:
- β_2 agonist
- Relax detrusor
- Used in - Overactive bladder

Which one of the following don't have significant dopaminergic activity:
- A) Dopamine (D_1, D_2, D_3)
- B) Fenoldopam (D_1)
- C) Dobutamine (β_1)
- D) Boperamine (D_1, β_2)
Dopamine: has D_1, D_2, α_1 action.

\[\downarrow \downarrow \downarrow \]

<2 µg/kg 2-5 5-10 µg/kg.

DOC for Cardiogenic Shock - Dopamine.

<table>
<thead>
<tr>
<th>Shock</th>
<th>T/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiogenic</td>
<td>NE or Dopamine</td>
</tr>
<tr>
<td>Cardiogenic & oliguria</td>
<td>Dopamine</td>
</tr>
<tr>
<td>Anaphylactic</td>
<td>Adrenaline</td>
</tr>
<tr>
<td>Secondary</td>
<td>α-blocker</td>
</tr>
<tr>
<td>Adrenal insufficiency</td>
<td>Steroids</td>
</tr>
</tbody>
</table>

Blood pressure:

\[BP = CO \times \text{Peripheral resistance} \]

\[\downarrow \downarrow \]

SBP DBP

Effect of Isoprenaline on BP:

- β_1, β_2, β_3 action.
- No α action.
- ↑SBP; ↑DBP → Reflex Tachycardia
- Wide pulse pressure.

NA: α_1, α_2, β_1

No π_2 action

↑SBP; ↑DBP → Reflex Bradycardia

Adrenaline on BP: acting on α, α_2, β_1, β_2
Biphasic response of Adrenaline on BP.
- Adrenaline cause initial ↓BP & later ↑BP.

Dalei Vasomotor reversal phenomenon:

\[\alpha_1 \text{ Adrenaline} \sqrt{ } \]

If we give \(\alpha_1 \) blocker before adrenaline, adrenaline blocker \(\beta_1 \) act only on \(\beta_2 \) causing fall in BP.

9. All are lipid insoluble \(\beta \)-blocker except?
 A) Nadalol
 B) Propanolol
 C) Atenolol
 D) Sotalol

Lipid soluble \(\beta \)-blocker - Propanolol (Highly soluble)
- M/commenest drug used for prophylaxis of migraine.
- Performance anxiety
- Essential tremor
- Akathisia

Lipid insoluble \(\beta \)-blocker - Nadalol (Most longest acting >40h)
- Long duration of action
- No hepatic metabolism
- Unsafe in Renal failure - Dose adjustment required.
β-blocker

Non-selective β-blocker: 1st generation β-blocker
- Drug block both β₁ & β₂.

Cardioselective β-blocker: 2nd generation β-blocker
- (Predominantly blocks β₁ blocker)

- No selective β₂ blocker.

3rd generation β-blocker - β-blockers with additional properties

Cardioselective β-blocker:

- **Nebivolol** (Most Cardioselective; Releases NO)

 - Vasodilation

- Betaxol - Useful in Glaucoma; Safe in asthma?

- Bisoprolol - Useful in CCF

- Atenolol

- Esculolol - Most ultra short acting (9 min), i.v., Emergency

- Acebutolol

- Metoprolol - Useful in HTN, Angina, MI, CCF

- Celiprolol

3rd generation β-blocker:

1. β-blocker having α blocking property:

 - **Labetalol** - β & α blocker
 - Use → HTN emergency in pregnancy
 - S/E → Postural hypotension, hepatotoxic

 - Carvedilol - β & α blocker
 - Antioxidant
 - Use → in CCF → Bisoprolol → Metoprolol
(2) β-blocker having NO releasing property -
Nebivolol
Neprilide

(3) β-blocker having K⁺ channel opening action -
Tilisolol

(4) β-blocker having K⁺ channel blocking property -
Sotalol — Class III antiarrhythmic group.

BUTOXAMINE:
- Only selective β₂ blocker
- Used for research purpose, not for therapeutic purpose.

β-blocker having highest myocardial stabilizing

Na⁺ channel blocking property
or local anaesthetic action:
→ Propranolol.

β-blocker having highest intrinsic sympathomimetic
→ Pindolol

β blocker having favourable effect on lipid profile
→ Pindolol.

Antidote for β-blocker poisoning — Glucagon.
Uses of β-blockers:

1. CNS - Performance, Anxiety
 - Prophylaxis - Migraine
 - Akathisia
 - Essential tremors.

2. Eye - Glaucoma
 - β blocker - Timolol
 - Betaxolol
 - Carteolol
 - Labetalol
 - Metipranolol

 Systemic side effect of Timolol - Bradycardia
 - Heart block
 - Bronchospasm

 # Betaxolol - Safe in asthma.

 Local side effect of Timolol - Blepharitis, conjunctivitis
 - Nasolacrimal duct obstruction

3. Thyroid - Hyperthyroidism
 - propranolol inhibits peripheral conversion of T4 → T3
 - Symptom relief.

4. CVS - HTN, Arrhythmia, Dissection of aorta
 - Angina
 - CCF
 - MI
 - HOCM
AFC Joint National Committee guidelines

First line drugs used in HTN:
- Thiazides
- ACEi
- ARB
- CCB

→ NO β blockers.

5) Useful for portal hypertension (Prophylaxis)

Propranolol

DOC for HT of bleeding due to esophageal varices
- OCTREOTIDE

Most potent vasoconstrictor
- Controls bleeding
 - Terlipressin – Vi agonist can be added.

DOC for prophylaxis – Propranolol, Nadalol.
Central acting drugs

GABA:

![GABA diagram](image)

Metabolism by - GABA transaminase.

Action of GABA: When GABA enters GABA A, Cl-channel enters causing hyperpolarization.

Drugs acting via GABA A pathway

- Benzodiazepines
- Barbiturates

BZD binding to BZD receptor which is made up of d, y units of GABA A.

BZD - GABA facilitatory.

\[\text{frequency of Cl-channel opening.} \]
MOA of Barbiturates —
- Barbiturates binding α, β units of GABA A.

Barbiturate:
- Low dose → GABA facilitatory
- High dose → GABA mimetics
- Duration of Cl channel opening.

Benzodiazepine (BZD):
- Action (USE) → Sedation
 - Anti-convulsions
 - Anti-anxiety
 - SMR.

Diazepam — DOC for Acute febrile seizure (Rectal Diazepam)
- Status Epilepsy (currently DOC - i.v. lorazepam)
- Delirium tremors.

Lorazepam — DOC for Status Epilepsy.

Alcohol withdrawal: DOC: Chlordiazepoxide.
- (Delirium tremors)

Midazolam → short acting
Remimazolam → ultra short acting
- Anaesthetic properly.

Alprazolam — Insomnia, Anxiety disorder

Long term use of BZD — Addiction
- Tolerance
- Daytime sleeping.
BZD safe in liver failure pt:
- Temazepam
- Orazepam (Metabolite of Diazepam)
- Lorazepam

Sleep onset Insomnia:
- Z compounds - Zolpidem (Most common)
 - Zopiclone
- All are short acting - Zaleplon (Shortest)

FLUNITRAZEPAM: Date Rape drug.
Causes Anterograde amnesia.

KETAMINE: Also date rape drug.

BZD poisoning -

Antagonist:
- Competitive antagonist — FLUMAZENIL
 - Prevent binding of BZD against GABA-A at
 - Specific antidote of BZD
 - Given i.v.
 - \(t_{1/2} = 60 \text{ min} \)

BICUCULLINE: Competitive antagonist of GABA
- Non-competitive inhibitor of BZD

PICROTOXIN: Direct Cl– channel blocker
Inverse agonist of BZD Receptor - β-Carboline

Flumazenil used for - BZD poisoning, β-carboline poisoning, γ-compound poisoning.

BARBITURATES:

Long acting
- Primidone
- Phenobarbitone

Short acting
- Secobarbitone
- Pentobarbitone

Ultrashort acting
- Theophenone Sodium
- Methohexital

Theophenone sodium - Indications
- IV induction GA
- Redistribution
- Cerebro protective

Other uses - Narco analysis, Status epilepsy

Methohexital - Causing convulsion
Used in Electroconvulsive therapy

Phenobarbitone - Metabolite of Primidone
- Useful in Anti-convulsion in pregnancy & pediatrics
- In children it causes hyperkinesia
General properties of Barbiturates:
- Algesic property (produce pain)
- Narrow therapeutic index (Hence - unsafe)

 Used in - Epilepsy
 Anaesthesia

Clinical manifestation of Barbiturates:
- Flabby muscle
- Coma
- Shallow & falling Resp
- Bullous eruption

T/I:
- No specific antidote.

- Poisoning → Forced alkaline diuresis
 Nephrodialysis.

All barbiturates are microsomal enzyme inducer.

Since powerful enzyme inducer
:: C/I - acute intermittent porphyria.
GABA analogues:

- **GABA Reuptake inhibitor:** TIAGABINE
- **GABA Transaminase inhibitor:** VIGABATRINE
- SODIUM VALPROATE
- Glutamic acid decarboxylase activator: VALPROATE

VIGABATRINE - DOC for infantile spasm (Tuberous Sclerosis)

YE → Visual field defect → Psychosis

For Simple Infantile Spasm - ACTH

LEVATIRACETAM: ligand for SV2A protein

- Synaptic Vesicle
 - modify synaptic release of Glutamate/GABA

Controls Seizure

New drug - **GABAPENTIN** → Useful in DM neuropathy pain,

PREGABALIN → Post herpetic neuralgia.

GANAXALONE

- Neurosteroid
 - Direct Cl⁻ Channel opener

Useful in - Absence seizure

Catasternal seizure.
GABA B (G-protein Coupled Receptor)

- **Agonist:** BECLOFEN
- **Antagonist:** SACLOFEN

BACLOFEN - Centrally acting SMR

Useful in:
- Hiccough
- Craving of alcohol.

MELATONIN:

- Sleep inducing hormone
- Secreted from pineal gland.

Melatonin analogue - **REMELTEON**

\[\begin{align*}
&\text{MT1} & & \text{MT2} \\
\downarrow & & \downarrow \\
& \text{Useful in sleep onset insomnia} & & \text{No risk of ABUSE/TOLERANCE.} \\
\end{align*} \]

TASIMELTEON - Useful in T/F sleep awake disorder in blind.

Melatonin analogue

AGOMELATINE - Agonist on MT1/MT2

- Antagonist on 5-HT2C
- Melatonin analogue

- Antidepressive property

SUvorexant → FDA approved drug for insomnia

ALMOREXANT → Non-selective OREXIN receptor antagonist

Another OREXIN receptor antagonist.
Glutamate

AMPA receptor
\[\text{open Na}^+ \text{, Ca}^{2+} \]
Channel

NMDA receptor
\[\text{open Na}^+ \text{, Ca}^{2+} \]
Channel

Both are ligand gated receptor.

T/t of Epilepsy – Glutamate antagonist

AMPA blocker NMDA blocker

Topiramate Felbamate
Lamotrigine Valproate
Remacemide
Perampanel
Tolamipemal

Actions of Sodium Valproate:

- GABA agonism
- Anti glutamate
- Na\(^+\) Channel blocking action
- Ca\(^{2+}\) Channel blocking action
- Broad spectrum anti-epileptic

Lennox Gastroate Syndrome:

\[R \rightarrow \text{FELBAMATE} - \text{Se - Hepatic failure} \]
\[\text{Aplastic anemia} \]

Currently Used

Valproate
Rufinamide (Na\(^+\) Channel blocker)

TOPIRAMATE:

Use → Epilepsy

Prophylaxis of Migraine

Alcohol (Anti-craving)

Smoking ()

GE → Renal Stone

Wt. loss

LAMOTRIGINE:

Useful in → Epilepsy

BPD Depressive

Rarely cause SJS (Steven Johnson Syndrome).

TEN (Toxic epidermal necrolysis)

NMDA Blockers:

Ketamine: → Dissociative anaesthesia

Anaesthetic: [Xenon

Action: $N_2 O$ (laughing gas) → GE → Megaloblastic Anemia

Memantine → Useful in Alzheimers

Acamprosate → GSHP agonist properly, Craving alcohol

Acamprosate → Useful in Parkinsonian

Methadone → Doc for opioid deaddiction

Reluzole → Useful for ALS

Phencyclidine → Angel dust
Dopamine as a Neurotransmitter:

Dopaminergic pathway:

1. Meso-limbic fibre - extend up to prefrontal lobe
 - secrete dopamine
 - dopamine - cause Psychosis

2. Nigro-striatal neuron - function is to synthesise & release dopamine in corpus striatum
 - helps in initiation of movement.

 In corpus striatum - amount of ACh & Dopamine balanced.

 At age - adequate amount of dopamine is not secreted & there is P in ACh activity.
 - Muscle rigidity occurs due to P ACh.
 - Hypokinesia, Tremor, Rigidity.

3. Tubero-infundibular fibre - extend from hypothalamus to anterior pituitary.
 - Dopamine analogue are used for t/t of galactorrhea.
 - Dopamine act on D2 receptor in the brain & causes psychosis.
 - Any drug blocking D2 & causing anti-psychotic effect is called ATYPICAL ANTI-PsychOTIC.

Two most common side of anti-psychotic < EPS

 Galactorrhea.
Levodopa & Carbidopa: long term S/E

1. Psychosis
2. Choreathetoid movement (Dyskinesia).

Psychosis:
- Overactivity of Dopamine.
- D₂ blockers → Conventional / Typical Antipsychotic.

Conventional / Typical Antipsychotic Drugs

- Phenothiazines
- Butyrophenones
- Thioxanthenes
- Chlorpromazine
- Haloperidol
- Thiothixene
- Trihexyphenidyl
- Haloperidol
- Flupenthixol
- Huperzine
- Pimozide

Typical antipsychotic = Neuroleptic agents.

Most potent D₂ blocker / Antipsychotic = Butyrophenone

Max. EPS produced

THIORIDAZINE S/E → Corneal pigmentation
- Cataract
- Retinal degeneration.
Most potent Antipsychotic — HALOPERIDOL

- Cause Max. EPS
- Less ANS side effect.

CHLORPROMAZINE — Causes Cholestasis jaundice.

Drug induced Parkinsonism:

TOC — Centrally acting Anticholinergic

Trihexyphenidyl (BENZHEXOL)

Other — Benzotropine
Reperiden
Procyclidine.

PROMETHAZINE — 1st gen. anti-histamine

have Anti-cholinergic action

So, used in EPS.

Extra pyramidal Syndrome:

1. Drug induced Parkinsonism
2. Acute muscular dystonia: PROMETHAZINE BENZOHAXAL
3. Tardive dyskinesia: No specific tse
 Symptomatic — Valproate, Vit E.

VALBENAZINE (Newer drug)

- Acts by vesicular monoamine transporter 2 inhibitor.
4. AKATHESIA - DOC: Propranolol

5. Malignant Neuroleptic Syndrome: DANTROLENE directly acting SMR.

Anti-Parkinson drug:

LEVODOPA:

- Protein meals reduce absorption of levodopa.
- Vit-B6 (Pyridoxine) should not be given as levodopa because it stimulates peripheral conversion.

Peripheral toxicity:

M/C S/E of levodopa - Nausea & Vomiting

- Alteration in taste sensation
- Due to stimulation of D2 receptor
 - wi CTZ:

D2 receptor blocker - Domperidone

- Metoclopramide

- Only domperidone is useful in t/t of vomiting due to levodopa.

- Metoclopramide is not used because it crosses BBB & reduces efficiency of levodopa.

- Causes - Cardiac arrhythmias
 - Exacerbation of angina
 - due to D1, β1, & α activation.
LEVODOPA + CARBIDOPA

→ Dopacarboxylase inhibitor

long term & → Abnormal choreo athetoid movement

→ Psychosis

Huntington’s Chorea → Movement disorder due to

Tourette Syndrome → Overaction of dopamine

↓

T/t - Doc: Tetrabenzazine

(Dopamine Depletor)

other - Chlorpromazine

Haloperidol

Levodopa is Precursor of melanin

→ C/I in melanoma

Chronic therapy of levodopa may cause

On & *off* phenomenon

Dyskinesia → Severe

Parkinsonism

↓

Rescue therapy

→ Apomorphine (Da)

given SC

Abrupt withdrawal of levodopa → Neuroleptic

malignant Syndrome
AMANTIDINE:

Influenza

- Influenza A
 - Amantadine
 - Rimantadine
- Influenza A & B (Bird flu)
 - Oseltamivir
 - Zanamivir.

Oseltamivir - 75 mg / 1 BID / 5 days - Oral
 ↘ Prodrug - Causes Nausea & Vomiting.

Zanamivir - Intranasally - Bronchospasm

Vaccination:

PERAMIVIR (Neuraminidase Inhibitor)
 ↘ IV (Intravenous)

Amantadine:
- Anti cholénergic
- Dopaminergic agonist
- NMDA antagonist

- Useful in Parkinsonism

GE - Ankle edema
 Levido reticularis. (Net like skin rash).
Ergot D₂ agonist: Bromocriptine
 Pergolide
 Cabergoline

Common SE of these 3 drugs - Erythromelalgia, Cardiac valve fibrosis.

Pergolide - Causes max Cardiac valve fibrosis.

Other uses of Bromocriptine:
 - Prolactinoma.
 - Acromegaly
 - Type 2 DM

Non-Ergot D₂ agonist: Pramipexole / M/C Dementia / Psychosis.
 Ropinirole
 Rotigotine (Transdermal)

Advantage: No peripheral vasoconstriction.

Pramipexole → SE → Compulsive shopping
 Ropinirole
 Kleptomania
 Sexual desire

Useful for SE of Restless Leg Syndrome.
COMT inhibitors

JALCAPONE

ENTACAPONE

- **Dangerous toxicity**
 - Rhabdomyolysis
 - Severe diarrhoea
 - Hepatotoxicity

Urine - Yellowish Orange.

SEROTONIN (5-HT)

Source - Tyroptphan

Func of $5HT1A$ - Inhibition of release of Serotonin.

Autoreceptor of Serotonin.

Monoamine undergoes metabolism by Monoamminooxidase (MAO). They produce metabolite 5-hydroxyindole acetic acid.

- In Carcinoid tumour - ↑ 5-hydroxyindole acetic acid.
- Serotonin undergoes reuptake causing *central* serotonin.

Action of Serotonin on 5HT1 B/D - Vasocostriction

\rightarrow **SUMATRIPTAN (use - Migraine)**

(mainly $1D$; min $1B$)

Action of Serotonin on 5HT2 - Schizophrenia

\rightarrow **Clozapine**

Risperidone Olanzapine
Action of Serotonin on 5HT3: Nausea & Vomiting

5HT3 antagonist - Ondansetron
Granisetron

Action of serotonin on 5HT4: Diarrhoea.

Selective 5HT4 agonist - Cesapride
Mocapride
Tegaserod QT prolongation on ECG.

All serotonin receptors are G-protein coupled receptor except 5HT3 (ligand gated receptor)

Acute Migraine:
Main issue - Vasodilation
For t/t of acute migraine - Vasocostriclor

Ergot Alkaloids - Ergotamine
5HT1B/D agonist - Sumatriptan (Doc)
Rizatriptan
Almotriptan
Frovatriptan
Zolmitriptan

Care is taken for HTN & IHD in these pts.

St. Anthony’s fire → Chronic treatment of ergot alkaloid cause peripheral vasoconstriction (gangrene of foot)
Poisoning - Ergotism
BUTOPHANOL - Opioid

Used intranasally for Headache.

Drug useful for Prophylaxis of Chronic Migraine:

1. M/C drug - Propranolol (β-blocker)
2. CCB - Flunarizine
 (Not channel blocking & Antioxidant property)
3. Anti-convulsant - Valproate
 Gabapentin
 Topiramate
4. TCA - Amitriptyline

5. Clonidine

6. 5HT2 blocker
 - Pizotifen
 - Cyproheptadine
 Antihistamine + Antimuscarine
 + Antiserotonin.
 - Primary used as appetite
 - Used in Serotonin Syndrome.

 - Metyrapone (Not used)
 - Causes rhinobulbar & peritoneal fibrosis

 Newer drugs - Calcitonin gene related peptide (CGRP)
 - Vasodilation.

 CGRP antagonist → Telcagepant - i.v.
 → Telcagepant - Oral
 → Hepatotoxic
LASMIDITAN - 5HT1E agonist

\[\text{Undertrial} \]

Atypical Antipsychotics

(5HT2 Antagonists)

- **Clozapine**
 - Advantages:
 - Less EPS

- **Quetiapine**
 - Refractory cases

- **Olanzapine**
 - +ve & -ve symptoms of psychosis

- **Ziprasidone**
 - Not causes metabolic syndrome

- **Aripiprazole**
- **Asenapine**

Clozapine - s/e → Agranulocytosis 0.8 - 1% (dose independent)

- Seizure (10%)
- Ileus (Paralytic) → Constipation
- Salorrhoea
- Metabolic syndrome
 - Pillow syndrome
 - Wet
 - Anti-suicidal action

Quetiapine - s/e - Cataract, Priapism

Olanzapine - use → Mania in BPD

- Adverse effect → Max ++ wt gain
- Max ++ metabolic syndrome
RESPERIDONE: In addition to blocking 5HT2, it also blocks D2. May cause EPS.

LURASIDONE: Useful in BPD may also cause EPS.

ZIPRASIDONE: M/e S/E - QT Prolongation.

ARIPIPRAZOLE: Useful in BPD (mania) - Best drug among atypical antipsychotic.

ANXIETY DISORDER:
↑ GABA activity
↑ 5HT activity.

BUSPIRONE: 5HT1A agonist
Anti anxiety agent (Chronic Anxiety)
Advantage - Non sedative
Non habit forming.
Disadvantage - Delayed in onset (3 to 4 weeks)

For acute anxiety - Temporarily - BZD

Performance anxiety = Res: Propranolol
Anxiety & panic attack = Res: SSRI
β1 blocker: Hydroxyzine (Anti anxiety property) → 1st gen. antihistamine.
Celebrex → Metabolite of Hydroxyzine → 2nd gen. antihistamine.
Female Sexual Stimulant: FLIBANSERIN useful in HSDD - Hypoactive Sexual Desire Disorder

Deficiency of Serotonin & NE - Depression

TCA, SNRI, NDRI → Inhibit reuptake of 5HT, NE

SSRI → Inhibit reuptake of 5HT.

MAO - inhibitors

MAO-A MAO-B

- Involved in metabolism - Metabolism of Dopamine
 of NA & 5HT.

- Useful in depression

SELEGELINE
RASAGILINE
SAFINAMIDE

Selective [MECLOBAMIDE
MAO-A inhibitor] CLORGILINE

Non-selective MAO inhibitors:

PHENELZINE
TRANYLCPROMINE
ISOCARBOXAZID

Cheese reaction = T/t : Phenolamine
SSRI:

Fluoxetine (longest acting \(\rightarrow \) 5 to 7 days)

Fluoxamine - Shortest acting

Paroxetine

Citalopram

Escitalopram - Highly selective SSRI

Sertraline - Least drug interaction.

Side effects of SSRI - May Cause HTN

- Insomnia, Anxiety, Sexual Side

\[\rightarrow \text{delay in ejaculation.} \]

- It is taken in morning

\[\rightarrow \text{Useful in t/f of premature ejaculation.} \]

M/c - Nausea & vomiting

- Diarrhea

Drug interaction:

Serotonin Syndrome - SSRI + MAO inhibitor

\[\rightarrow \text{Primarily SHT2 antagonist} \]

\[\text{Anti H1 + AcH} \]

FLUOXETINE: Least discontinuation Syndrome

PAROXETINE - Wt gain

Teratogenic tension

Used in Premenstrual Syndrome (PMS)

\[\text{FDA approved.} \]
Drug interaction w/ Fluoxetine & Tamoxifen:

Tamoxifen - for anti-cancer activity needs activation.
- activated with help of CYP2D6 enzyme.

Fluoxetine - CYP2D6 enzyme inhibitor.

Tamoxifen failure occurs.

SSRI Use:
1. Depression
 - juvenile depression - Fluoxetine
 - Sertraline
2. OCD
3. PTSD
4. Blumia nervosa
5. Anxiety & panic attack.
6. PMTS.

DOC: SSRI: ① OCD
② PTSD
③ Anxiety & panic attack.

TCA
- Inhibit reuptake of Serotonin & NE (Non-Selective)

Clomipramine - T/t of OCD
Doxepin - Strong antihistaminic property
 • Atopic dermatitis
 • Lichen Simplex

All TCA have antihistaminic property.
IMIPRAMINE — Strong anticholinergic activity.
 * Nocturnal enuresis
 * DOC: Desmopressin

All TCA have anticholinergic activity.

AMITRYPTYLINE

Used in — Antidepressant
 * Prophylaxis of migraine
 * DM neuropathy pain
 * Gabapentin, Pregabalin

Other — Nortyline
 * Desipramine
 * Amoxapine — D2 blocking action
 * Anti-psychotic
 * EPS, Galactorrhea
 * Maprotiline
 * Reboxetine

Adverse effect of TCA:
 * All TCA having antihistaminic property
 * ” ” anticholinergic ” ”
 * ” ” D2 blocking ” ”

 - Sedation, wt gain, seizure
 * taken at bed time.
 - Dryness of mouth, constipation, tachycardia
 & Retention of urine
 - Postural hypotension
TCA poisoning & t/t:
- Cardiac arrhythmia → Lidocaine, Bretylium, Avoid clausa
- Convulsion → Diazepam
- Coma →
- Metabolic acidosis → i.v. Sodium bicarbonate
 - No role of dialysis in TCA poisoning
 - Often large Vd.

Anti-cholinergic
1. Avoid TCA in elderly male → Aggravate Urinary Retention.
2. Alzheimer's de.

ST JOHN'S WORT:
- Natural antidepressant.
- Hyperforin
 - Monoamine reuptake inhibitor.
 - Very powerful enzyme inducer.
 - Lead to OOP failure.
 - Anti-retroviral failure.

Mianserin: Presynaptic 52 inhibitor
- Useful in depression.

Mirtazapine: Presynaptic 52/5HT1 inhibitor
- Useful in depression
- NSA (Noradrenergic & specific serotoninergic antidepressant)
TIANEPTIN

5HT reuptake enhancer

Used as antidepressant

Mechanism of action not known.

BPD (Bipolar Disorder):

Prophylaxis - Lithium

Acute mania - Valproate

- Carbamazepine
- Olanzapine
- Aripiprazole
- Diazepam

Depressive phase - Lamotrigine

For Rapid Cycler: DOC - Sodium Valproate

> more than 4 episodes of mania & depression in a year.

Lithium: Monovalent cation

Useful for prophylaxis of BPD.

Narrow Therapeutic Index (TDM)

Therapeutic drug monitoring

Monitoring plasma lithium level.

T1/2 = 24 hrs.

Maintenance for BPD = 0.5 - 0.8 mg/L

Acute Mania = 0.8 - 1.2 mg/L

Toxic symptom > 1.5 mg/L

Toxicity → Hemolyisis → 4 mg/L

Website: http://mbbshelp.com

WhatsApp: http://mbbshelp.com/whatsapp
Adverse effect of Lithium:

L = Leucocyte count ↑ (leucocytosis)
T = Tremor (M/c 8-10 Hz)
H = Hypothyroidism (inhibit release of T3 & T4)
I = ↑ urinalysis (polyuria = DI) (K: Antiloride)
M = Mother (EBstein's anomaly) = Teratogen

In CNS → T wave changes
Dermatology → Exacerbation of psoriasis

C/I:
1. Pregnancy & lactation
2. Sick sinus syndrome

Drug interaction w/ lithium & SMR (Succinylcholine & Pancuronium):

→ Lithium aggravate the action of SMR.
→ Stop lithium 1 day before Sx.

Hypernatremia will occur in lithium toxicity.

[Diuretics aggravate lithium toxicity.

NSAID]
Opioid Receptors:

3 types: endogenous opioid Receptor in body

μ (Mu)
δ (Delta)
κ (Kappa)

All opioid receptor are GPCR - via Gi pathway.

Endogenous opioid peptides:

Endorphine - more affinity toward μ
Enkephaline - " " δ
Dynorphin - " " κ

Action of opioid:

- Due to activation of μ & δ:
 P = Physical dependence, ↑ Prolactin secretion
 M = Miosis
 C = Constipation, Convulsion (M3G)
 A = Analgesic
 R = Respiratory depression
 E = Euphoria
 S = Sedation

Opioid are useful in t/r of dull pain

Continuous pain
Localised pain
Visceral pain

Opioid (Morphine) activating Edinger westphal nucleus (III CN) causing miosis.

Only systemic Morphine cause miosis.
Action of opioid due to kappa:

D = Dysphoria
M = Miosis
A = Analgesia
R = Respiratory depression
D = Diuresis
S = Sedation

Morphine having Histamine Releasing action.

↓ Vasodilatation

↓ Shifting of plasma fluid in systemic circulation.

It is useful for the treatment of Pulmonary edema.

All the action of morphine may develop tolerance on repeated administration except - Miosis

Constipation

Convulsion

Enkephalins may undergo metabolism by Enkephalinase.

For the treatment of Diarrhea - Lactobacillus

Enkephalinase inhibitor.

Pure agonist: Codeine converted to morphine by CYP2D6

Natural opioid - Morphine, Codeine (CYP2D6)

Semi-synthetic - Diacetylmorphine (Heroin), Pholcodeine

Synthetic - Pethidine (Meperidine - Anti mucocaricine,

Nor - Pethidine) Metabolite of pethidine

GI in the MI pain. SE - Seizure (Convulsion)
Pethidine & Morphine GI in Renal failure.

Methadone:
- Longest acting opioid
- NMDA blocking property & inhibiting reuptake of NE & 5HT.
- Useful for the treatment of neuropathic pain & Cancer pain
- Dose for opioid deaddiction.

Tramadol:
- Also having property of inhibiting reuptake of 5HT & NE.

Be careful using Methadone & Tramadol in pt. using SSRI, MAO inhibitor causing Serotonin Syndrome.

Fentanyl: Fentanyl group.

<table>
<thead>
<tr>
<th>Fentanyl</th>
<th>Sufentanil</th>
<th>Alfentanil</th>
<th>Remifentanil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potency</td>
<td>x100</td>
<td>x1000</td>
<td>x5</td>
</tr>
<tr>
<td>Dose</td>
<td>30 min</td>
<td>30 min</td>
<td>5-10 min</td>
</tr>
<tr>
<td>Least potent: Pethidine & propoxyphene (1/10)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analgesia for day care SX: Remifentanil.

Fentanyl + Droperidol = Neuroleptic Analgesia
Fentanyl + Droperidol + N₂O = Neuroleptic anaesthesia.

Fentanyl group cause Post op bruical rigidity (Max - Alfentanil)

Thorax muscle rigidity = wooden chest Syndrome

Mixed agonist - antagonist:
- µ agonist / kappa agonist:
 - Nalorphine (more euphoria, not in use)
 - Pentazocine (sympathetic stimulant) yi in MI pain
 - Butorphanol (nasal formulation)

- µ agonist / kappa antagonist:
 - Buprenorphine
 - Useful for all type of pain
 - Useful for opioid withdrawal
 - Alternate to mehidone

Pure antagonist:
- Naltrexone
- Nalmefene (intravenous)
- Naltrexone (Oral, long acting, Hepatotoxic)

Acute morphine poisoning:
 - Specific antidote - Naloxone (0.4-0.8mg)
 - I.V., repeated every 2-3 min.
 - It blocks µ receptor at much lower doses than those needed to block κ or δ receptors.
 - It promptly antagonizes
Naltrexone → Useful to control craving for Morphine & craving for alcohol.

For the treatment of constipation due to morphine (opioid)

Peripheral opioid antagonist: METHYL NALTREXONE

Newer opioid:
Peripheral Kappa antagonist: ASIMADOLINE

for IBS
Peripheral μ & κ-agonist; delta antagonist:
ELUXADOLINE → for IBS.
Peripheral K-agonist:
NALFURAFINE → Anti-fungal → CKD

Codine
Dextromethorphan → Anti-tussive opioid.

Anti-diarrhoeal opioid:
Diphenoxylate (Atropine can be added to Loperamide prevent addiction).

C/1 of Morphine:
- Head injury pain (Respiratory insufficiency)
- Biliary colic pain (Causing constriction
- Severe constipation of sphincter of Oddi.)
Ethyl Alcohol/ Alcohol:

Deaddition - Disulfiram like reaction

(Aldehyde dehydrogenase inhibitor)

Drug causing Disulfiram like reaction:

C = Chlorpropamide (Sulfonylurea - DM)

Cefoperazone (3rd gen. Cephalosporin)

M = Metronidazole

Praised = Procarbazine (Anti Cancer) → Alkylated

G = Griseofulvin

T = Tinidazole

Naidu = Nitrofurantoin (Causes coffee colour urine)

Chronic alcoholic generally suffer Thiamine deficiency

(Vit B1)

Alcohol undergo Zero order Kinetic elimination:

Zero WAT 7 Power

W = Warfarin

A = Alcohol

A = Aspirin

T = Tolbutamide

T = Theophylline

P = Phenytoin

Excretion of Alcohol → Kidney

In acute ethanol poisoning, pt. presenting c

hypoglycemia. T/t = Glucose + Thiamine
Methyl alcohol:
 \[\text{Methyl alcohol} \]
 \[\text{Formaldehyde} \]
 \[\text{Formic acid (dangerous)} \]
 \[\text{Ocular damage} \]
 \[\text{Metabolic acidosis} \]

Specific antidote for Methanol poisoning:
 \[\text{Fomivazole (4-Methyl pyrazole)} \]

Acting by inhibiting Alcohol dehydrogenase.

Alternative drug - Ethanol also given.

Hemodialysis.

Anti craving drugs for Alcohol:
- Disulfiram (doc)
- Naltrexone (1st line drug)
- Acamprosate (2nd, NMDA blocker + GABA agonist)
- SSRI (Citalapram)
- Ondaselor
- Topiramate, Beclafen (GABA agonist)
- Rimonabant, a CB1 receptor antagonist.
FAS (Fetal alcoholic syndrome):
- CF - Microcephaly
- Maxillofacial abnormalities
- Movement disorder - Hyperkinetic
- Mental retardation

Phenytoin:
- Na+ channel blocking antiepileptic

Fosphenytoin - Prodrug of phenytoin
- Water soluble (im/slow iv)
- Safe for

Salvage Kinetics - First order → Zero order

Adverse effect:
1. Acute toxicity
 - On high iv → Cardiac arrest
 - High oral → Nystagmus
 Ataxia
 Diplopia
 Vertigo

2. Chronic toxicity
 - Gum hypertrophy (M/c - 30%)
 → Due to collagen accumulation
 - Blood → Megaloblastic anemia (Folic acid deficiency)
 Interference Vit K activity (Hemorrhage)
 - Interference - Vit D & Calcium activity
 → Osteomalacia & rickets
- Hypersensitivity reaction → Pseudolymphoma.

- In female → Hirsutism

- Inhibits release of insulin from β-cell of pancreas → Hyperglycemia (DM)

- Teratogenicity → due to Aneuploidy
 - C → Cleft lip & palate
 - P → Hypoplastic phalanges
 - M → Microcephaly.

- Extravasation of phenytoin → Purple glove syndrome.

Phenytoin — Microsomal Enzyme inductor.

Non-epileptic uses of Phenytoin:
- Trigeminal neuralgia
- Digoxin → induced VT
- Wound healing

Carbamazepine:
- DOC for Partial Seizure (Focal seizure)
- For 1/3 of Temporal lobe epilepsy.

Non-epileptic uses:
- DOC for Trigeminal neuralgia.
- Useful for 1/3 mania in BPD
- Carbamazepine having SSAH activity → Antidepressive
 → Use in DT
It is microsomal enzyme inducer.

It also undergoes auto induction.

- Phenobarbitone
- Carbamazepine
- Neurapine

Sodium Valproate:
- Broad spectrum anti-epileptic.

MOA = GABA agonism, property
- Anti-glutamate
- Na⁺ channel blocking
- T-type CCB

DOC for Myoclonic/Atonic/Clonic and Tonic Seizures
First line drug for Absence Seizure/ Lennox Gestaut Syndrome.

Non-epileptic uses:
- Migraine prophylaxis
- Manic in BPD (LITHIUM)
- Rapid cycle (> 4 cycles/year)
- Jardine dyskinesia

It is microsomal enzyme inhibitor

GE: V = GIT, Wt. gain (Vomiting)
AL = Alopecia / Curling of hair
P = Pancreatitis, hyper ammonia
R = Rashes
Q = PCOD
A = Allergy

T = Teratogenic (Spina bifida / CVS problem / Orofacial)

E = Hepatotoxicity (<2yr children) digital

Carnitine (Antioxidant)

Others Antiepileptic:
- Levaliracetam (S32A)
- Magnesium Sulfate (DOC in eclampsia)
- Acetazolamide
- ACTH (Infantile Spasm)

Levaliracetam — Modify synaptic release of glutamate / GABA.

Acetazolamide:
- Carbonic anhydrase inhibitor.
- Useful for Glaucoma → Taken orally.
- Used as diuretic — acts on PCT

Use — Acute mountain sickness
- Periodic paralysis
- Absence seizures
 → GANAXALONE
- Catamenial epilepsy

Absence Seizure:
- Abnormal of T-type Ca²⁺ Channel (Malamute)

Rx: T-type cCB
- ETHOSUXIMIDE
- SODIUM VALPROATE (1st line drug)
- TRIMETHADIONE (Withdrawn — Nephrotoxic)
 → Hemorhaphia — Day Blindness
Anti-epileptic having Carbonic anhydrase inhibiting property:
 - Topiramate [cause Nephrolithiasis]
 - Zonisamide

Retigabine
 or Ezogabine [used for partial seizure]
 - New drug
 - causing blue colour pigmentation on lip & skin

GENERAL PHARMACOLOGY

Pharmacokinetics (PK):

Drug absorption:
 - Food interferes drug absorption
 - eg: Milk (Ca\(^{2+}\))—Tetracycline
 - Protein meal reduces—Absorption of levodopa

Food enhances drug absorption
 - Lithium
 - Haloperidol
 - Carisoprodol
 - Bedaquiline
 - Fibrates—lowering cholesterol
 - more absorbed & cholesterol diet

- Absorption of Iron—Vit C (Ascorbic acid)

For a drug to absorb better—Lipid soluble & distributed
 - Non-ionised
Acidic drug non-ionised in Acid medium. Basic drug non-ionised in Basic medium.

Acidic drug - Absorbed in stomach.
Basic drug - Absorbed in Duodenum/Intestine.

Morphine

Strongest Acid/Alkali always seen in ionised form.

Heparin - Can't be used orally.
- Heparin ionised molecule, not cross the placenta, so not cause teratogenicity.
- DOC for anticoagulation.

Lignocaine - For rapid absorption/onset of action.
- Given & Sodium Carbonate.

Weak basic drug. For 4 duration given & Adrenaline.

Acidic drug poisoning -
For acidic drug poisoning if the pt is passing acidic urine, you should alkalise the urine.
Urine alkalised & Sodium bicarbonate.

Alkaline drug poisoning -
For the pt of alkaline drug poisoning if the pt. passing alkaline urine, you should acidify the urine.
Urine acidified & Ascorbic acid

By injection Ammonium Chloride.

Ion-trapping - Acidic drug (Aspirin) reached basic medium get ionised & trapped in the region.
Pglycoprotein: Permeable efflux pump.

Presence of P glycoprotein decreases the bioavailability of digoxin.

e.g. of P glycoprotein inhibitor: Quinidine
 Itraconazole
 Erythromycin
 Amiodarone
 (Verapamil)

Drug undergoing high first pass metabolism orally:

Propranolol
Salbutamol
Theophylline
Verapamil
Lignocaine
Nitroprusside
Tramipramine

* All nitrates go to extensive 1st pass metabolism except - Gooseride, nitroprusside.

* Rectally given drug absorbed via External hemorrhoidal vein - No 1st pass metabolism.
 If via Internal hemorrhoidal vein - 1st pass metabolism occurs.
 i.v. - 100% Bioavailability.
Henderson–Hasselbalch equation:
\[
pKa = pH + \log \left(\frac{\text{ionized} \ A}{\text{un-ionized} \ A} \right)
\]

If \(pKa = pH \)

means, 50% drugs is in ionized form & 50% unionized form

\(pKa - pH = 1 \rightarrow 90\% \) drug in absorbed form.
\(pKa - pH = 2 \rightarrow 99\% \)
\(pKa - pH = 3 \rightarrow 99.9\% \)

Bioavailability curve:

![Graph showing bioavailability parameters: C_{max}, AUC, Tmax, MTC, MEC, duration of action, therapeutic range, onset time, and time with formulas and notes on bioequivalence.]

\(C_{\text{max}} = \text{Maximum plasma conc} \)
\(T_{\text{max}} = \text{Time to reach } C_{\text{max}} \)
\(\text{AUC} = \text{Area under curve} \)

Same drug, same dose, same dosage form,
\(< 20\% \rightarrow \text{Bioequivalent} \).
Orphan drug:
- A drug useful for diagnosis/prevention & treatment of rare disease.
 - E.g.: Fumipizole (4-methyl pyrazole - Alcohol dehydrogenase inhibitor)
 - Procainamide Sulfate (Antidote of Heparin - Chemical antagonist)
 - Calcitonin 1mg = 100 U of Heparin
 - Digibind (Antidote for Digoxin)
 - Liothyronine (Active T3, Medullary C-cell)

Calcitonin: Useful in Hypercalcemia
Page 11 of
Osteoporosis
diagnosis for Medullary Carcinoma.

Pitolisant / Tiprolisant: Use in Narcolepsy
(Orphan drug status).

Essential drugs:
- Drug that meet health needs of the majority of population
- Affordable & Available in all area
- Always single compound

Schedule H - Drug only given on prescription written
by medical practitioner (Registered).
Drug distribution:

60% Water

70 kg → 42 L

4 L 10 L 28 L

plasma interstitial cellular

fluid compartment

If a drug only in the plasma compartment, it is called as low Vd.

lipid insoluble

if drug is ionised → stays in plasma compartment

highly protein bound

large size

- Role of Hemodyalisis

If a drug goes to cellular compartment it has high or large Vd.

lipid soluble

non ionised

free form

large Vd → no role of dialysis.
Drug can't removed by dialysis:

A = Amphetamine

V = Verapamil

O = Opioids, OPC

I = Imipramine (TCA)

D = Diazepam

Dialysis = Diazepam (BZD)

BZD - Very strong binding capacity

Can't remove by dialysis.

Loading dose depend upon Vd.

For drug having large Vd - for rapid action give loading dose

Volume of distribution (Vd)

\[V_d = \frac{\text{Total i.v. dose}}{\text{Plasma conc.} \times \text{L}} \]

Loading dose = Vd x Target plasma conc.

Clearance = Rate of elimination / Plasma conc.

Maintenance dose = CL x Target plasma conc.

\[t_{1/2} = 0.693 \times \frac{\text{Vd}}{\text{CL}} \]
Plasma protein binding:

- Acidic drug in plasma bind to plasma albumin.
- In nephrotic syndrome or liver failure (hypalbuminemia) plasma albumin can be low.
 Use low dose of Acidic drug.

- Basic drugs are generally bind to Alpha1 Acid Glycoprotein.

Drug displacement type of drug interaction:

eg: Warfarin displacing tolbutamide from protein binding site.

Sulphonamide displacing bilirubin from protein binding site.

BBB:

BBB absent - Pituicytes
 Pineal gland
 Area Postrema CTX
 Medial Eminence.

Do not cross BBB - Streptomycin (Aminoglycosides)
 Neostigmine (Doc for Atropine poisoning)
 Glycopyrrolate (Pre anaesthetic medication)
 Dopamine

All aminoglycosides are ionised molecular, so never absorbed orally, so not given orally.

Even though aminoglycosides not absorbed in GIT.
Neomycin & Paromomycin

Streptomycin - 95% in pregnancy because it crosses placental barrier & causes permanent deafness.

Redistribution:
- eg: Thiopentone Sodium (Ultra short acting)
 - Rapidly entering brain & rapidly comes out & distributes to liver, kidney etc.

Bio-transformation (Drug metabolism):
- Consequences of drug metabolism
 1. Inactivation (more water soluble)
 - excreted easily.
 2. Active metabolite formation from an active drug
 3. Activation of inactive drug.

Active metabolite from active drug:
- Phenacetin → Paracetamol
 - causes Analgesic nephropathy so withdraw.
- Codeine → Morphine
 - CYP2D6
 - in some people it is deficient.
- Diazepam → Oxazepam
- Spironolactone → Canrenone.
Activation of inactive drug

<table>
<thead>
<tr>
<th>Prodrug</th>
<th>Active metabolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>Dopamine</td>
</tr>
<tr>
<td>Methyl dopa</td>
<td>Methyl norepinephrine</td>
</tr>
<tr>
<td>Endapril</td>
<td>Enalaprilat</td>
</tr>
<tr>
<td></td>
<td>(All ACE inhibitors are prodrugs except Captopril, Lisinopril)</td>
</tr>
<tr>
<td>Desipramine</td>
<td>Epinephrine</td>
</tr>
<tr>
<td>Becamphenicillin</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Minoxidil</td>
<td>Minoxidil Sulphate</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>Phosphamide mustard</td>
</tr>
</tbody>
</table>

Drug metabolism:

1. Non synthetic reaction (Phase I reaction):
 - Oxidation (M/c Phase I reaction)
 - All Phase I reactions are taken care by microsomal enzyme - CYP450

2. Reduction
3. Hydrolysis
4. Cyclization
5. Decyclization

Phase II reaction:
1. Glucuronidation (M/c) - Morphine
2. Sulfate Conjugation
3. Glycine
4. Glutathione (Paracetamol metabolisin)
5. Acetylation
6. Methylation
PARACETAMOL

PHASE I
CYP2E1

N-acetyl benzoquinone (hepatotoxic
immuno amine (NAA)) metabolite

PHASE II
Glutathione conjugation

Inactivation

For paracetamol poisoning
\[N\text{-acetyl cysteine} \]

\[\text{Methionine} \]

Becomes glutathione
generated.

Chronic alcoholic
More prone for liver damage

Booz Alcohol
CYP2E1 inducer

End result of phase II reaction
Inactivation.

Drug undergoes Acetylation:
\[S = \text{ Sulphonaluride / Dapsone} \]
\[H = \text{ Hydralazine} \]
\[I = \text{ Isoniazid} \]
\[P = \text{ Procainamide} \]

Methylation:
e.g.: Histamine
Methylhistamine

Noradrenaline
Adrenaline
Microsomal enzyme:

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP3A4 (M/c)</td>
<td>>50% of drugs</td>
</tr>
<tr>
<td>CYP2D6 (and)</td>
<td>Codeine → Morphine</td>
</tr>
<tr>
<td></td>
<td>Fluoxetine inhibit CYP2D6</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen activated by CYP2D6</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>Warfarin</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>Omeprazole metabolism</td>
</tr>
<tr>
<td></td>
<td>Clopidogrel</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>Paracetamol - NABQIA</td>
</tr>
</tbody>
</table>

Clopidogrel: Anti-platelet

Prodrug

Activated by help of CYP2C19.

Aspirin + Clopidogrel (prodrug) →

Aspirin → Causes gasbris

\(t/t \) → Omeprazole

Omeprazole shouldn’t be given with clopidogrel.

Preferred PPI given with clopidogrel

Pantoprazole

Rabeprazole
Microsomal Enzyme

<table>
<thead>
<tr>
<th>Inducers</th>
<th>Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>G = Griseofulvin</td>
<td>VitB = Valproate</td>
</tr>
<tr>
<td>P = Phenytoin</td>
<td>K = Ketacongazole</td>
</tr>
<tr>
<td>R = Rifampicin</td>
<td>Cao = Cimetidine</td>
</tr>
<tr>
<td>S = Smoking</td>
<td>Cause = Ciproflaxacin</td>
</tr>
<tr>
<td>Cell = Carbamazepine</td>
<td>Enzyme = Erythromycin</td>
</tr>
<tr>
<td>Phone = Phenobarbitone</td>
<td>Inhibition = Isoniazid (INH)</td>
</tr>
</tbody>
</table>

Drug excretion:
- Major source = Kidney.
- Net excretion of drug = GF + TS - Tubular reabsorption.

- PROBENICID - by inhibiting
 - prolong the action of penicillin.

First order kinetics
- Constant fraction of drug excreted constant interval of time.
- T1/2 constant
- 97% drug eliminated after 5 half life.

\[
\begin{align*}
100 & \quad \frac{T_{1/2}}{1\text{hr}} \quad \rightarrow \quad 50 \quad \rightarrow \quad 25 \quad \rightarrow \quad 12.5 \quad \rightarrow \quad 6.25 \quad \rightarrow \quad 3.125. \\
\downarrow & \quad 50\% \text{ of drug excreted every 1 hr.}
\end{align*}
\]
Zero order kinetics:
- Constant amount of drug excreted constant interval of time.
- No fixed T½.

eg: 25 mg of drug, every 1 hr.

\[
100 \xrightarrow{1\text{ hr}} 75 \xrightarrow{1\text{ hr}} 50 \xrightarrow{1\text{ hr}} 25 \xrightarrow{1\text{ hr}} 0
\]
\[
t_{1/2} = 2\text{ hr} \quad t_{1/2} = 1\text{ hr}
\]

Common drug undergoing Zero kinetic
- W = Warfarin
- A = Alcohol
- A = Aspirin
- T = Tolbutamide
- T = Theophylline
- Power = Phenytoin

Pharmacodynamics:
- Receptor mediated MOA
- Cell memt' Receptors.
- Ligand gated \xrightarrow{G-protein Coupled} \xrightarrow{Enzyme linked}
- Fastest acting receptor Serpenline Shape
- most active unit
- of GPCR is d-unit
Enzyme linked receptor:
- **Example:** Tyrosine kinase Receptor
 - Insulin acting on cell mem' receptor

 - Activate Tyrosine kinase

 - Shift GLUT4 from cytoplasm to plasma mem'

 - Influx of glucose

PEGVISOMENT: GH receptor blocker
- Useful for Thy Acromegaly

RUXOLITINIB: JAK enzyme inhibitor
- Useful in Myelofibrosis

TOPACITINIB: JAK 1 & 3 inhibitor
- Useful in RA
Intracellular receptors:
- Steroid hormone
- Vit D
- Estrogen
- Progesterone
- Testosterone

Drug acting on nucleus:
- Thyroid hormone

Log dose response curve:

Receptor Antagonism
1. In the presence of competitive antagonist DRC will be shifted parallel to right.
 Efficacy → Same; Potency → ↓

2. In the presence of non-competitive antagonism DRC will just come down.
 Efficacy → ↓; Potency → Same.
ESD & LD50

![Graph showing ESD & LD50]

- **Lower the ESD more potent**
- **Lower the LD50 more dangerous drug**

Drug Safety:

\[
\text{Therapeutic index} = \frac{LD_{50}}{ED_{50}}
\]

- Theophylline [Narrow]
- Lithium [Narrow]
- Anti-epileptics [Therapeutic index]

- **Warfarin** - assessment by INR

\[
\text{INR} = \frac{\text{Patient Prothrombin (PT)}}{\text{Control Prothrombin}}
\]

- **Heparin** - assessment by aPTT

- **LMWH** - No need for monitoring

- In obese pt. or Renal failure we do assessment by Anti factor Xa.
Teratogenicity:

Preimplantation (0-2 wks)

Implantation (2-8 wks) -> More teratogenicity occurs. -> Organogenesis

Growth & development (9 wks - 9 months)

1) Warfarin: causing Contradi Syndrome (Fetal dry chondrolysisplasia Punctata)

2) Isolrelinoin (Vit A) - Teratogenic

Lithium - Ebstein Anomaly c/f i in pregnancy.

3) Thiocamide:
 - Methimazole -> aplastic culis
 - Carbimazole -> choanal atresia
 - Propylthiouracil

 Bcz of strongly binding & plasma protein less chance of crossing placenta.

4) Alcohol - FAS (Fetal alcohol Syndrome)
5) Valproate - Valproate Syndrome
6) ACE-i - Renal agenesis
7) Indomethacin - Premature closure of ductus arteriosus
8) Cyclophosphamide - Imperforate anus
9) Busulfan & Chlorambucil (Chemotherapy) - Induce cleft palate
10. Tetracycline - Bone & teeth defect (Baby)
 In mother → Fulminant hepatic failure.
 So, definitely YES in pregnancy.

11. Thalidomide - Phocomelia.
 → Category X drug.

12. Misoprostol - Useful for abortion
 → Teratogenicity → Moebius Syndrome
 → Development of CN VI & VII.

13. DES - Female → Vaginal Ca, hypertrophic baby (can't see of life)
 → Male baby
 If taken in pregnancy.

Drug development:
Preclinical trials - We follow guidelines

CPCSEA = Committee for the purpose of control
& supervision on experiments on Animals.

IAEC = Institutional animal ethics committee.

Clinical trial - Testing on humans
Guidelines - GCP (Good clinical practice)

HEC = Human Ethics Committee.
Phase I: Pharmacokinetics Studies
Not efficacy.

Healthy volunteers (20-100)
Open label (No blinding)
- To know max tolerable dose (MTD)
MTD - Safety & tolerability.

Anti-Cancer drug bypass Phase I.

Phase II: Therapeutic exploratory
both efficacy & safety.

100-150 patients
Single blind
- To establish therapeutic efficacy.
- Dose ranging & ceiling effect.

Phase III: Therapeutic confirmatory.

Upto 5000 pts. from several centres
Double blind
- To confirm therapeutic efficacy.
- To establish the value of drug in relation.

Phase IV: Post market Surveillance.

Ethical clearance is not required.
No time limits
To know rare & long term adverse effect.
Phase 0: Micro dosing studies.

Pharmacovigilence:
- Assessing
- Monitoring
- Reporting
- Adverse effect.

Longest-acting insulin - Degludec.

Insulin Preparation
- Fast-onset & Short acting (Onset 10-20 min; duration 3-4 hrs)
 - Insulin Lispro
 - Aspart
 - For t/t of PP glucose.
 - Glulisine

- Short acting (Onset - 30 min; duration → 5-8 hrs)
 - Regular Insulin
 - Made of 6 molecules (Hexamer)
 - Dimer → it takes 30 min.
 - Monomer → to reach monomer status.
 - Given 30 min before meal.
 - Given i.v.
 - Use in DKA, Hyperkalemia.

Intermediates (Onset 1-3 hr; duration → 16-20 hr)
- NPH (Isophane Insulin) - Neutral Protamine Hagedorn
- Lente Insulin (30% Semilente, 70% Ultralente)
Longer acting — Glargine (Acidic ⇒ pH = 4)

Longest acting — Degludec

Adverse effect < Hypoglycemia

Wt. gain.

Inhalable insulin:

Exubera — Lack of acceptance by pts & physicians.

Afrezza — Latest

Ultra rapid (↑ in 15 min)

FDA approved.

\(\text{MAD}: \text{Insulin acting on cell mem}^\text{'r} \text{ receptor} \)

Activate tyrosine kinase

Shifting of GLUT4 from cyto plasma to plasma membr

Influx of Glucose.

Insulin Release:

For release of Insulin — at least 30% of β-cell are functioning.

In Type 1 DM — impossible to release insulin

All β cells are destroyed.
Sulphonylurea
• Naglitriande
• Rapaglinide
• Nateglinide

Newer drugs for DM:
GLP-1 analogues:
- Exenatide
 - given s/c
 - S/E - GIT (Nausea, Vomiting, Diarrhea)
- Liraglutide
- Taspoglutide
- Albglutide
- Dulaglutide
 - FDA approved - Liraglutide
 - given for obesity
 - All obtained from GILA MONSTER (Salivary gland venom)

DPP4 inhibitors: Oral
- Sitagliptine -> Excretion: Renal
- Adverse effect
 - Saxagliptine
 - Renal/Hepatic
 - Nasophragitic Liraglutide
 - URTI
 - Vildaglutide
 - Aloglipine

- Vildaglutide: S/E - Hepatic toxicity
 - pt. undergo periodic LFT.

- PRAMINTIDE: Inlet Amyloid Polypeptide analog.
 - given s/c
 - Approved for Type 1 & 2 DM.
SGLT2 inhibitors:
- Canagliflozin
- Sotagliflozin
- Dapacliflozin
- Empagliflozin

Common S/E - Recurrent UTI (Bezo glycosuria)
Risk of breast/bladder CA.

GI - in Renal failure:

Diabetes - Oral medications:
- Sulphonylureas
- Biguanides
- Thiazolidinediones
- Alpha-glycosidase inhibitors
- Meglitinitides
- Bromocriptine
- Cholesevelam

Sulphonylureas

1st generation:
- Tolbutamide (6-12hr)
- Chlorpropamide (30-60hr) - Longest acting

Cause SIADH (dilutional hyponatremia)

2nd generation:
- Cholesevelam
- Pioglitazone
- Metformin
- Rosiglitazone
- Pioglitazone
- Glimipiride
Glibenclamide — Safe in pregnancy.
Gliclazide — Antiplatelet, antioxidant.

M/c problem of Sulphonylurea — Hypoglycaemia
Wt. gain.

Biguanides: Metformin

- MOA = AMPK activator
 \(\rightarrow \) AMP-activated protein kinase.

- Stimulates — Glucose utilisation

 - Skeletal
 - Adipose
 - Muscle
 - Tissue.

- It is insulin sensitizer.

- Suppresses — Glycogenolysis
 Neoglucogenesis

Useful in T/t of PCOD

Renal root of excretion so GI in Renal failure.

Stop metformin 1 day before & 1 day after the
Radiocontrast exposure.

N-acetylcysteine \(\rightarrow \) t/t of Radiocontrast induced
renal cell injury.

Metformin Reduces Microvascular
Macrovacular events.
ADR of Metformin: • GI toxicity
 • Inhibit intestinal absorption of glucose, hexose, vitamin.

Metformin causes lactic acidosis in presence of kidney, liver or cardiorespiratory failure, alcoholism.

α - Glucosidase inhibitors: inhibit carbohydrate digestion in small intestine.
 Acarbose
 Voglibose
 Migliitol

 - Useful in PP blood glucose.

γE - Flatulence
 Abdominal distension
 Diarrhoea.

γI - in Renal failure.

Thiazolidinediones:
 PPAR (Peroxisome proliferated-activated receptor)
 Activation-PPAR α
 ↓
 PPAR γ
 ↓
 Insulin Sensitizer
 Stimulate lipoprotein lipase
 TGL (VLDL) ↓
 Older drugs:
 Pioglitazone - Hepatotoxic
 Rosiglitazone - CCF
PPAR α agonist: (GTBG)

Clopabrate - Not in use (Gall stone, GB malignancy)

Myopathy: Fenofibrate (Prodrug, longest t½, ↓ LDL, ↓ Plasminogen, Uricosuric action)
Hepatotoxic: Bezafibrate
Gemfibrozil

M/C S/E Pioglitazone - Wt gain
Macular edema
Osteoporosis
Anemia
Bladder Ca.

Drug activating both PPAR α & γ:
SAROGLITAZAR
→ Approved in type of Diabetes dyslipidemia.

Statins:
HMG CoA + Acetate
HMG CoA reductase ↓ Statins
Mevalonic acid
↓
Cholesterol ↓

Statins → ↓ Total Cholesterol
Statins → ↓ LDL (by upregulation of LDL receptor in liver)
S/E → Myopathy
Hepatotoxic
Teratogenic
Co-enzyme Q given to control muscle weakness.

Liver enzyme goes more than 3 times - stop Statins.

COLESEVELAM

Only cholesterol lowering agent in pregnancy.

PCSK9 inhibitor:

- **Alirocumab** - monoclonal antibodies
- **Evolocumab** - for hypercholesterolemia.

Nicotinic acid (Vit B3) - Niacin

- \downarrow LDL
- \downarrow LP(a)
- \uparrow HDL

S/E - Cutaneous flushing $(\text{Niacin promotes the synthesis of vasodilatory PGS})$

So, Aspirin added to Niacin to control flushing.

Hyperuricemia

Diabetes (causing Insulin Resistance)

Hepatotoxicity
EZEZIMIBE: inhibit cholesterol absorption in intestine.

- Bile acid sequestrants:
 - Cholestyramine
 - Colestipol
 - Colesevelam
 - approved for t/c of DM

- MIPOMERSEN: Newer drug
 - Given s/c Once in a week
 - Useful for lowering cholesterol

- PROBUCOL: Inhibits LDL oxidation

- GUGULIPID: ↓ LDL (Not use - Diarrhea)

- CETP inhibitors: (Cholesterol ester transport protein)
 - TORCE TRAPIB
 - Dalcehrapib
 - Evacehrapib
 - Anaacetrapib

- MTP inhibitor (Microsomal triglyceride transporter inhibitor)
 - LOMITAPIDE

- AVASIMIBE: Inhibit conversion cholesterol to cholesterol ester
 - ACAT-1 inhibitor
Antithyroid drugs:

Histology of thyroid gland -

Steps of Synthesis:

1. Sodide uptake
2. Oxidation of iodine & formation of iodine
3. Organisation (iodine + thyroglobulin)
4. Coupling \(\text{MIT} + \text{DIT} = T_3 \)

 \(\text{DIT} + \text{DIT} = T_4 \)

\(T_3 \& T_4 \)

Stored in follicle for 3-4 days.

THIOAMIDES:

- Propylthiouracil (also inhibit peripheral conversion of \(T_3 \to T_3 \))
- Carbimazole (Prodrug)
- Methimazole (active form)

\(\text{M/C S/E of Carbimazole & Methimazole: Maculopapular rash (4-6\%)} \)

- Agranulocytosis (0.1-0.5\%)
- Severe hepatitis - PTU

Causing teratogenicity - Fetal aplastic cutis

Hepatotoxic - PTU

PTU - Used in emergency hyperthyroid crisis.

- May be safe in pregnancy
LUGOL’S IODINE:

- **MOA** - Inhibits release of T2 & T4 from follicle.
 - Fastest-acting antithyroid drug.
 - Used in post-op preparation.
 - Reducing vascularity.

- **S/E** - Iodism - Acne form skin rash.

Peripheral conversion of T4 - T3 inhibitor:

- **β-Blockers**
 - Amodarone
 - Propyl thiouracil
 - Dexamethasone
 - I podate

Iodide uptake inhibitor:

- **POTASSIUM PERCHLORATE**
 - Thiocyanate
 - Used in TSH of iodide induced hyperthyroidism.

Radioiodine therapy:

- \(^{131}I \rightarrow t_{1/2} = 8 \text{ days} \)
 - \(\text{L} \) emits 2 rays: \(\gamma \)

- Penetrating power = 0.5 - 2 mm.
 - \(\gamma \)-Ray useful for diagnostic purpose
 - \(\beta \)-Ray “” therapeutic “”

- C/I - Pregnancy, young children, Ophthalmopathy.
 - Not useful for TSH of Medullary C4 thyroid.
Newer drug for T/I of Medullary Ca thyroid:

LENVATINIB-BTC
VANDETANIB-MC

Non-hypothyroid drug causing Hypothyroidism:
LITHIUM (stop release of T3 & T4 from follicle)
AMIODARONE (inhibit conversion of T4 to T3)
PROPRANOLOL (inhibit synthesis)
ETHIONAMIDE (inhibit synthesis)
SODIUM NITROPROSCILIDE - inhibit uptake of iodide.

Growth Hormone Release inhibitor
- For t/I of Acromegaly
 OCTREOTIDE S/C
 LANREOTIDE

GH Receptor inhibitors -
PEGVISOMANT S/C

D2 analogue -
BROMOCRIPTINE Oral
CABERGOLINE

Octreotide - 40 times more potent than Somatostatin
 longer acting - 12hr
 Given S/C or i.v.
 Never orally.

Uses - Acromegaly
Carcinoid [Diarrhoea]
AIZ
Portal HPN (Bleeding esophageal varices)
S/E - Gall stone
Vit B12 deficiency (Megaloblastic anaemia)
Rarely DM also.

Dwarfism: T/t
GH releasing factor analogue:
SERMORELIN
HEXARELIN
TESAMORELIN
→ For lipodystrophy in HIV pt.
✓ Abdominal fat.

GH analogues
SOMATREM [also used in - AIDS related wasting
SOMATROPIN
Turner Syndrome.
Pituitary dwarfism.

S/E - Insulin resistance - Type 2 DM
↑ ICT.
→ To rule out Papiledema
→ Fundus exam

Analogue of IGF + IGF binding protein 3
MECASERMIN (s/c)
↓
to maintain stability.

S/E - Hypoglycemia

Uterine: OXYTOCIN
• ↑ force / frequency of contraction.
• ↑ contractility to fundus & body, lower segment
 not contracted unlike ergometrine &
 methyl ergometrine.
• Useful in induction of labour.
Control post partum hemorrhage
Useful in ejection of milk.

ATOSIBAN – Oxytocin Receptor Antagonist

Tocolytic of choice in heart ds – MgSO4

ZOLEDRONATE – Bisphosphonate given i.v.
 once in a year
 DOC for postmenopausal osteoporosis

NATALIZUMAB – Useful for Multiple sclerosis
 given once in a month

MIPOMERSEN – ↓ cholesterol level
 given s/c once in a week

DALBABVANCIN – Glycopeptide
 Antibiotics
 Give once in 6-10 days
 Single dose act 6-10 days
Drugs for Osteoporosis

Drugs inhibit Osteoclast:
- Bisphosphonates
 - DOC: Zolendronate
- Estrogen & SERM
- Calcitriol
- Calcitriol (Active form of Vit D)
- Calcitonin
- Thiazide diuretics
- Denosumab - RANKL antibody
 - Monoclonal antibodies

Drugs promoting osteoblast:
- Calcitriol (Active form of Vit D)
- Androgene & Anabolic steroids
- Calcium
- Parathormone
 - (hPTH 1-34) → Teriparatide
 - PTH analogue
 - Given only for 1yr (Max 2yr)
 - Long-term therapy cause Osteosarcoma.

STRONTIUM RANALATE
- Dual action < promoting osteoblast
 - inhibiting osteoclast

ZOLENDRONATE:
- Anti osteoclastic activity
- Interference on mevelonate pathway
 - Antilumour activity (calc)
- Faster acting
- DOC in Hypercalcemia (Osteonecrosis of jaw)
- Also used in Paget's ds.
- Less venous irritant
- Renal toxicity

S/E:
- Thrombophlebitis
- During infusion: Fever + Chills
 "Infusion reaction"
- Nephrotoxicity
- Osteoporosis of jaw bone

M/c drug for steroid induced osteoporosis
 - Bisphosphonate
Osteonecrosis of Neck of femur - S/E of steroid

STEROIDS:

1. **GLUCOCORTICOIDS:**
 - Class A → Short acting (Duration < 12 hrs)
 - Max mineralocorticoid activity: Hydrocortisone
 - Corticosterone

<table>
<thead>
<tr>
<th>Gluco</th>
<th>Mineralo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocortisone</td>
<td>1</td>
</tr>
<tr>
<td>Corticosterone</td>
<td>0.8</td>
</tr>
<tr>
<td>(Least potent)</td>
<td></td>
</tr>
</tbody>
</table>

 Class B → Intermediate acting (duration 12-16 hrs)

 - Prednisone 4 0.8
 - Prednisolone 4 0.8
 - Methylprednisolone 5 0.5
 - Triamcinolone 5 0
CLASS C: Longer acting (> 36 hrs)

<table>
<thead>
<tr>
<th>Steroid</th>
<th>10</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prednisolone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betamethasone</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>(Most potent G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>(Maxm G)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mineralocorticoids:

* Natural

<table>
<thead>
<tr>
<th>Steroid</th>
<th>0</th>
<th>3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldosterone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Synthetic

<table>
<thead>
<tr>
<th>Steroid</th>
<th>0</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOCAn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fludrocortisone 10 250

Maxm glucocorticoid action — Dexamethasone
Maxm mineralocorticoid action — Aldosterone

G & max min — Hydrocortisone
Least potent G — Cortisone

Most "" — Betamethasone
Maxm topical action — Triamcinolone

Selective glucocorticoid (No minerals) — TPDB
Selective Mineralocorticoid (No Gluc) — DOCAn

Website: http://mbbshelp.com
WhatsApp: http://mbbshelp.com/whatsapp
Steroid — Anti-inflammatory
 Anti-cancer
 Immunosuppressive

Anti-inflammatory action of steroids
 - By inhibiting Phospholipase A₂

ZILEUTON — Inhibit lipooxygenase
 Not in use
 Severe hepatotoxic

NSAID — Inhibit Cyclooxygenase.

Steroid having anti-cancer activity:
 - Apoptosis of T & B cells
 - Useful for lymphoma.

Steroid having immunosuppressive action:
 - Inhibit IL-1 & IL-6
 - Also catabolism of IgG

Methylprednisolone — Used in pulse therapy.

ACTH
 Cosyntropin — Infantile Spasm.
Adrenal Cortex - Cushing Syndrome

Drug useful for t/t of Cushing Syndrome:
- Metyrapone (11β-hydroxylase)
- Ketoconazole
- Mitotane - chemical adrenalectomy
- Aminoglutethimide
- Trilostane
- Etonidazole (General anaesthetic)

Pasireotide - Somatostatin analogue, useful in t/t of Cushing Syndrome.

Erectile dysfunction:
1. Selective PDE5 blocker:
 - Sildenafil
 - Vardenafil
 - Tadalafil - longest acting
 - Avanafil

- PDE5 enzyme is involved in metabolism of cGMP.
- PDE5 blocker by blocking cGMP metabolism causes vasoconstriction.

Acute adverse effect - Headache
 - Flushing
 - Hypotension
 - Nasal congestion

Long term (chronic) therapy causes blue vision defect.

Blocking PDE6
Drug interaction between Sildenafil & Nitrates:

Nitrates shouldn't be given with Sildenafil

6003 risk of severe hypotension.

Other drug for erectile dysfunction:

Apomorphine (Dopamine)
Trazodone (Atypical antidepressant)
Avanafil (VIP - Vasoactive intestinal polypeptide)
Ketanserin (Serotonin antagonist)
Naltrexone (Opioid Antagonist)

Ginseng
Kava
Gingko

Injectable therapy for Erectile dysfunction:

Alprostadil
Phentolamine
Papaverine.

Drugs useful for PE - Premature ejaculation:

- SSRI
- PDE5 inhibitors

For delayed orgasm:

Amantidine
Buapirone
Cyproheptadine.

For sexual stimulation:

- Yohimbine
Zinc
Ginkgo biloba
Ginseng.
ANTI ANGINAL DRUGS

Stable Angina
Unstable Angina
Vasospastic Angina (Prinzmetal Angina) (Variant Angina)

Cause < Reduction in O2 supply
↑ O2 demand.

Anti-anginal drugs

Vasodilator
Cardiac depressant

Nitrate
CCB
β-blocker

K⁺ channel opener

Pathway of FA oxidation inhibitors (pFoX)

Fatty acid
÷ oxidation ↔ TRIMETAZIDINE, RANAZOZINE

Free radical
↓
Cytoxicity to myocardial cell.

Angina Anarrhythmia

S/E - GI toxicity (M/C)
Thrombocytopenia
Liver dysfunction
Risk of movement disorder - GI in Parkinsonism
QT prolongation prolongation -

Excretes by Renal pathway - GI in Renal failure
NITRATES

Short acting Intermediate acting Long acting Longest acting
- GTN - Isosorbide - Isosorbide - Pentaerythritol
- Amyl Nitrite dinitrate mononitrate tetranitrate
 (shortest) (2-3hrs) (6-10hrs) (8-12hrs)

For acute attack - GTN, Isosorbide dinitrate

Least 1st pass metabolism - Isosorbide mononitrate.

S/L drug - Lipid soluble Non ionised

Skin rash - Pentaerythritol tetranitrate

MOA of nitrates:
- Nitrates acting on Cysteine receptor, they
 release NO NO activate Guanyl cyclase
 ↓
 Vaso dilatation θ→ CGMP (2nd Messenger)
 θ→ PDE5 ↓
 Sildenafil SMR

NO independent - direct Guanyl cyclase activators:
 RIOCI GUAT
 CINOCI GUAT
- Useful for t/t of Primary pulm. HTN.

CGMP normally undergo inactivation by PDE5 enzyme.
 So, PDE5 inhibitor = Sildenafil group of drug.
Nitrates may get tolerance due to down regulation of receptors.

Maxim Tolerance - i.v. infusion
& Transdermal patches.

Action of Nitraloi:
Visceral smooth muscle - Relaxed
→ Useful for t/t of Biliary colic pain
→ Useful for t/t of Achalasia cardia

Vascular smooth muscle - Vasodialator
→ Predominantly Venodialator
→ Peripheral pooling of Blood
→ Max. ↓ in Preload.
→ Mild ↓ of afterload.
→ ↓ O2 demand
→ Reduce angina.

Uses: Cardiac uses: Angina
- MI
- CCF

Non-cardiac uses: Biliary colic pain
- Achalasia cardia
- Cynide poisoning:
 ↓ by formation of Methemoglobinemia
ADR - Thrombosing Headache (M/c)

Hypotension

Reflex Tachycardia (due to sympathetic stimulation)

Tolerance

Melanogloobinemia

Rashes

Drug interaction b/w Nitrates & Sildenafil:

- Not combined together bcoz it cause severe hypotension.

- Gap of 8-10 hrs should be maintained.

Sodium Nitroprusside:

- Only i.v. route

- Short acting <10min

Indication - Hypertensive emergency

- Acute aortic dissection

- Drug is sensitive to light

- Covers & black towel

- Containing cyanide (Thiosynapse)

Risk of Hypothyroidism

- CI in pregnancy

β-blockers:

- ↓ Work load of cardiac

- CI in variant angina

- Abrupt withdrawal post angina

- β-blocker + GTN = to prevent Reflex Tachycardia

- Control catecholamine activity
Role of β-blocker on MI:
- Reduces size (zone) of infarction
- Anti arrhythmic action
- Reduces mortality

CCB:
- Chemical Type: Phenylalkylamines
 - Chemical names: Verapamil
- Benzolizepines: Diltilazem
- 1,4-Dihydropyridines (DHP):
 - Nifedipine
 - Niocardipine
 - Niwoodsipine
 - Amlodipine
 - Ni'trendipine (NO releasing property)

Neviranol: β-blocker having NO releasing property.

DHP:
- Site of action: Peripheral blood vessel
 - Vasodilatation
 - Useful for t of HTN & PVD.
 - Maximally arterial dilatation.
 - max in PVR.

ADR → Hypotension
 - Reflex Tachycardia
 - Ankle edema (Amlodipine max cause ankle edema)
 - Constipation
Nifedipine [Long acting]
Clevidipine [Short acting]

Non-dihydropyridines: Verapamil
Diltiazem

Site of action: AV node (Most imp.)
SA node

Action → Bradycardia
→ Anti arrhythmic agent

Uses → Atrial Tachyarrhythmia (AT)
SVT (Supra Ventricular Tachyarrhythmia)

ADR → Bradycardia
Block AV conduction → Prolongation of PR interval

Ankle edema
Constipation

C/I → WPW syndrome

Diltiazem:
Uses → HTN
Angina
Arrhythmias (SVT/AT)

CCB having anti-arrhythmic property
Verapamil → Class IV
Diltiazem → Antiarrhythmic
Nimodipine: Cerebro-selective CCB
Useful for 1/3 of Sub-arachnoid hemorrhage (SAH)
The purpose of given Nimodipine is to prevent Reflex ischemic damage.

Fasudil - Rho kinase inhibitor
Use - SAH
SSR PHT (Pulm. HTN)
Angina

CCB useful in Prophylaxis of Migraine - Verapamil
Flunarizine
T-type of CCB
Na⁺ Channel blocker
Anti-oxidant

K⁺ channel openers:
Hydralazine - Arteriolar dilator
Minoxidil - Anti-hypertensive
Diazoxide

Nicorandil (Anti-anginal)

Adenosine (PSVT) → DOC

Nicorandil: NO releasing property
Anti-anginal
S/E → Aphthous ulcer
Headache
Hydralazine:
- 75% of HTN-emergency in pregnancy
- NO releasing properly
- Metabolism by Acetylation
- Cause RAFELE

Minoxidil:
- Prodrug
- Active form → Minoxidil Sulphate.
Uses → HTN
Alopecia

Diazoxide:
- causing hyperglycemia by inhibiting insulin release from β-cell of pancreas.
Use → HTN
Insulinoma.
Phenytoin – also inhibit release of insulin
- Poor man drug for Insulinoma.

IVABRADINE –
- Causing Bradycardia.
- Na⁺ Channel blockers (Ifunny Current)
- Reduce HR.
Two indications: CCF
Angina.

SE - OW chronic therapy - Causes Luminous phenomena.
(Visual disturbance)

Hemoralopia - Trimethadione (Withdrawl - due to
Nephrotoxicity)
Day blindness

Reperfusion - Thrombolysis/PTCA

Drug eluting stent:
SIROLIMUS (Immunosuppressant)
PACLITAXAL (Anti-cancer drug additional
immunosuppressant)

Used to stent to decrease rejection.

ANTI-ARRHYTHMIC DRUGS:
Rapid closure of Na⁺ → PHASE 1
PHASE 2 → Plateau - Ca²⁺ influx
PHASE 3 → Repolarization
K⁺ efflux
Na⁺ influx → PHASE 0
APD
PHASE 4
-60mV

PHASE 3 → T WAVE
PHASE 2 → ST segment
PHASE 0,1 & mid phase of 2 → QRS
APD (Action potential duration) → QT interval.
Any drug having K^+ channel blocking property will cause QT prolongation.

- Class Ia & Class III drug having K^+ channel blocking property causing QT prolongation.

Classification: Vaughan Williams

Class I - Na$^+$ channel blocker

- Class IA, IB, IC

Class II - β-blocker

Class III - K^+ channel blocker

Class IV - CCB

Unclassified & Miscellaneous agent

Adenosine
Atropine
Digoxin
Magnesium Sulfate
KCl

Class Ia:
- Block Na$^+$ channel + K^+ channel block
- Having risk of causing QT prolongation.

Eg: Quinidine
Procainamide
Disopyramide
Quinidine -
Origin - Cinchona bark
\[\rightarrow \text{Symptom - Cinchonism} \]
\[\downarrow \text{Sinusus} \]
SLE - Diarrhoea
Hypotension (Bcz of blocking property)
Hypoglycaemia (Bcz Insulin releasing property)
SMR
Thrombocytopenia.

Drug interactions: Quinidine + Digoxine
Quinidine interferes renal excretion of Digoxin.
\[\therefore \text{aggravating plasma level of Digoxin} \]
\[\therefore \text{Digoxin toxicity.} \]

Procainamide:
SLE - Undergo metabolism by Acetylation
SLE.

Disopyramide:
Highest anticholinergic action.
Dry mouth, constipation, Retention of urine.
\[\therefore \text{Not safe in elderly male} \& \text{BPH.} \]

Class IB:
Na⁺ block + K⁺ opening.
- Never causes QT prolongation.
Site of action → Mainly acting on Bundle of His.
\[\text{Rt. Bundle, Lt. Bundle} \& \text{Purkinje fibre.} \]
only
Used for t/t → Ventricular arrhythmias (Tachycardia)

eg: Lignocaine (Lidocaine)
Mexilitine
Phenytoin
Tocainide.

Mexilitine:
- Lignocaine derivative
- Useful for t/t Ventricular arrhythmias.
- Used for Diabetic neuropathy pain
 (Unlabeled Use)
- Used for Phantom limb pain
 ADR - Severe Nausea & Tremor.

Phenytoin:
- Anti-epileptic
USE - t/t of Digitalis (Digoxin) induced VT

Tocainide:
Bcoz of causing Agranulocytosis it is not used.

Lignocaine:
- Class IB drug
- Never given orally bcoz undergo extensive 1st pass metabolism
- Given i.v.
- Lipid soluble, Cross BBB

S/E - Convulsion
 1st Sign - Nystagmus (1st sign)
 1st Symptom - Currum oral paraesthesia
Use - VT (Ventricular Tachycardia)
VF (Ventricular Fibrillation)
Digitoxin induced VT (DOC: Lignocaine)

Class IB drug has no role in atrial arrhythmias

Class IC:
- Na⁺ blocking + Negligible effect on K⁺ channel
- Max pro-arrhythmic property
- Non commonly used
- Only for anti-arrhythmic drug causing arrhythmia

Flecainide (DOC: for Acute WPW)
Enacainide
Propafenone
Moricizine

PROPafenOne:
- Also β-blocking property

Class III: K⁺ Channel blocker
- Prolong APD → QT prolongation

Amiodarone:
- Sodine containing anti-arrhythmic drug
 Multi MOA: K⁺ Channel blocking
 Na⁺ Channel blocking
 β- Blocker property
 CCB property
- Broad spectrum Anti-arrhythmic
Half life = 53 days.

USES: All type of arrhythmias
Ventricular & Supraventricular arrhythmias.

ADR:
PLZ = Photosensitivity, Pigmentation of skin (Gray-blue)
Check = Corneal deposition (Whorl like pattern cornea)
PFT = Pulmonary fibrosis, Peripheral neuropathy.
LFT = Liver damage, Pseudo alcoholic liver injury & Mallory Hyaline bodies.
TFT = Hypothyroidism

- Due to inhibition of peripheral conversion of T4→T3
Hyperthyroidism

Whorl like pattern cornea - Cornea Verticillata
or Vertex Keratopathy.

Pseudo lymphoma - Phenytain
Pseudo jaundice - Rifabutin

Amiodarone causing Hyperthyroidism due to:

1. Hypothyroidism: Inhibition of peripheral conversion of T4→T3.
2. Contain iodine → Iodine help in synthesis of
 T3 & T4
3. Can cause inflammation of follicle.

For each 200mg tablet there is 75mg of iodine.
Rx: Inhibit iodide trapping
 - Perchlorate
 - Thiocyanate

For inflammation - Rx: Dexamethasone (Steroid)
Class III Drugs:
- Amiodarone
- Dronedarone (Noniodine)
- Brevetilium (Chemical defibrillator)
- Sotalol
- dofetilide
- New drug: Icatibantide (FDA approved for conversion of AF-SR) - i.v.
- Vrenakalant

Class IV: CCB
- Verapamil (Most potent)
- Diltiazem

Miscellaneous Drugs:

Adenosine:
- Given i.v., short acting, Rapid infusion (Roxin)
- Site - Close to heart.
- DOC for SVT
- It is also called Endogenous epileptic.
 - Antagonist - methyl xanthine - theophylline
 - Agonist - Dipyridamole

 Cause → Coronary Steal Phenomenon.

For Acute SVT: i.v. Adenosine

i.v. Verapamil.

→ Prefer in Acute & SVT.

To prevent recurrence of SVT: Oral β-Blocker

Oral Verapamil.
MgSO₄

USE: 1. CNS

- Long QT syndrome
 - Congenital
 - Acquired
 - β-blockers
 - MgSO₄
 - (Propranolol)

USE: 2. Digitalis intoxication

- Hypokalemia
- Hypomagnesemia → Give MgSO₄
- Hypercalcemia

2. Respiratory System

USE: Bronchial asthma

3. GIT (laxative property)

USE: Constipation

4. Ortho (anti-inflammatory property)

USE: Synovitis

5. Obst & Gyn.

USE: Eclampsia

S/E: Diminished deep tendon reflex (M/c)

Rarely Resp failure

Safety Limit: 4 m Eq/L

- If >7 m Eq/L → Patellar reflex ↓
- >14 m Eq/L → Resp failure
Antidote - Calcium Gluconate.

ATROPINE:
- Anti-cholinergic agent.
- Causing Tachycardia.

USE - Bradycardia or Heart Block.

DIGOXIN: Already discuss.

Cardiac glycosides:

<table>
<thead>
<tr>
<th></th>
<th>Digoxin</th>
<th>Digitoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1/2</td>
<td>40 hr</td>
<td>5-7 days</td>
</tr>
<tr>
<td>Route of excr.</td>
<td>Renal</td>
<td>Hepatic</td>
</tr>
<tr>
<td>Plasma conc.</td>
<td>0.8-1.5 ng/ml</td>
<td>15-30 ng/ml</td>
</tr>
</tbody>
</table>

- Both have narrow therapeutic index
 i.e. Unsafe & need monitoring.

Non-

Digoxin S/E: Cardiac S/E

Nausea & Vomiting (M/C)
CNS depression
Yellow vision defect (Xanithopsia)
Gynecomastia (in male)

Cardiac S/E

Atiatal Tachyarrhythmia (AT)
AV block
VT (Ventricular Tachycardia)
Ventricular Bigeminy (M/C)
Non-paroxysmal AT & Variable AV block is Most Characteristic arrhythmia.
For t/t digoxin induced A/T — Propanolol.

Atropine → AV Block
Lignocaine → VT

No role of Hemodyalysis & in digoxin toxicity
6000 large Vd.

Antidote for digoxin toxicity — Digibind.

Check K^+, Mg^{2+}, Ca^{2+}
DIURETICS:

In the PCT → Carbonic anhydrase

Reabsorption of NaHCO₃ (85%)
Reabsorption of NaCl from urine (60%)

Thin descending limb → Absorption of H₂O
→ Concentrating Segment

Thick ascending limb → Na⁺-K⁺-2Cl⁻ Symporter
↓
Absorption of Na⁺, K⁺, Cl⁻, Ca²⁺, Mg²⁺.
(Diluting segment) (25%)

DCT → Na⁺-Cl⁻ Symporter
↓
ReAbsorption of NaCl (10%)
Reabsorption of Ca²⁺ (↑PTH)
& help of

CT → Reabsorption of NaCl (↑ help of aldosterone) (5%)
Secretion of K⁺ & H⁺
Reabsorption of H₂O (↑ help of ADH)

Primary Hyperaldosteronism (Conn’s Syndrome):
↑ Aldosterone

↑F → HTN

Hypokalemia
Metabolic alkalosis.

For ↑ HTN → K⁺ sparing antidiuretic
↓ Spironolactone.
Carbonic anhydrase inhibitors:
- Acetazolamide
- Dorzolamide [Non-competitive & Reversible]
- Brinzolamide

Site of Action - PCT
MOA - Inhibit Carbonic Anhydrase.

ADR - Loss of HCO3
- Metabolic acidosis.

Acetazolamide causing Alkaluria
- "So used in Alkalization of urine.
- Max" potassium loss.

CA inhibitor also acting on collecting duct - it inhibit tubular secretion of H+ → so cause Metabolic acidosis & massive Hypokalemia.

CA inhibitor are Sulpha derivative:
- SE - Hypersensitivity
 - Bone marrow suppression

C/I - liver disease (hepatic encephalopathy)
- COPD
- Metabolic acidosis.
Loop Diuretics: High Ceiling diuretic (↑ dose → ↑ diuretic action)
Site of action: Thick ascending loop of Henle

MOA: Inhibiting Na⁺-K⁺-2Cl⁻ symport

Less of Na⁺, K⁺, Cl⁻, Ca²⁺, Mg²⁺

Eg: Furosemide → Vasodilatory action (USE: RF, LVF)
bumetanide → Most potent
Mersalyl → Kidney damage (Not in Use)
Ethacrynic acid → Highly ototoxic (No CA enzyme inhibition)
Torsemide → longest t½

Role of Furosemide in Renal failure:
Furosemide promote Vasodilatory action on PG

By ↑ intra renal blood supply

Improving Renal failure

NSAID + Furosemide → NSAID is not given in Furosemide in Renal failure pt. Bcoz it inhibit
synthesis of PG.

Diuretics of choice in the presence of RF
Choice - Furosemide

Ineffective - Thiazides

Exception - Metolazone

Guy - K⁺ sparing drugs.
Role of loop diuretics in heart failure:

Furosemide - Only Relief symptoms of CHF.

Main mech: Vasodilation

Bez of vasodilation Furosemide (i.v.)

rapidly relieve breathlessness in CHF.

Side effects of loop diuretics:

Water loss Electrolyte Metabolism Miscellaneous

unbalance

Profound Loss of Na⁺ Hyperuricemia Metabolic alkalosis

ECF depletion K⁺, Cl⁻, Ca²⁺, Mg²⁺ Hyperglycemia Ototoxicity

↓ Hyperlipidemia (Irreversible)

Calcium (Risk of kidney stone) Exception: Aminoglycosides

INDACRINONE Cisplatin

Ethionine acid Vancomycin

derivative Erythromycin

Uricosuric agent

Drug interaction: Loop diuretics + Arrhythmia

- Loop diuretics by causing hypokalemia & hypomagnesemia → causing digoxin toxicity.
Thiazide diuretics:

Site of action: DCT

MOA:
1. Inhibiting Na⁺-Cl⁻ Sympoor
2. Promotes Reabsorption of Ca²⁺
 - Ca²⁺ Excretion → hypercalcemia (Urine Ca²⁺↑)
 - Safe for Renal stones.

3. Also having antidiuretic activity.

E.g.: Indapamide → Vasodilatory action (No CA enzyme inhibitor);
Chlorthalidone → longer acting
Melolazine → Useful even in severe RF.

A/c to JNC guidelines, the 1st line drugs are:
Thiazides - type diuretics
CCB
ACE inhibitors
ARB’s

Therapeutic effect:

As a diuretic —
1. T/t of Mild edema
2. T/t of HTN

As an anti-diuretic — T/t for Nephrogenic DI.

H + Ca²⁺ Excretion → Idiopathic hypercalcemia
 or William Syndrome
 → T/t of Calcium Nephrolithiasis
Adverse effects:

- Water loss
- Electrolyte abnormality
- ECFV depletion
- Hypokalemia
- Hyperuricemia
- Metabolic alkalosis
- Hyperglycemia
- Hypercalcemia
- LDL
- Impotency
- Erectile dysfunction
- Osteoporosis
- Thiazide causing insulin resistance
- As well as inhibiting β-blockers also
- Insulin release

- HTN and Hyperlipidemia
- (So don’t use thiazide)

- K⁺-Sparing diuretics
 - Aldosterone antagonist
 - Eprosartan (M/C)
 - Canrenone (Active metabolite)
 - Eplerenone (No gynecomastia)
 - Dronrospironedone (Progestrone)

- ENaC Channel inhibitor
 - Amiloride
 - Triamterene
 - Pentamidine
 - Trimethoprim

- ENaC:
 - Na⁺ from urine in Cő is absorbed by ENaC.
Spironolactone:

MOA: One & only drug acting on interstitium.

MOA of Amiloride: Amiloride acting from lumen & blocking ENaC.

Therapeutic uses of Spirinolactone:

- Block Aldosterone

1. **T/t for Primary Hyperaldosteronism (Conn's)**
2. **Dox** **T/t for Edema of liver cirrhosis (Ascites)**
3. **T/t for Heart failure.**

\[\text{Disease modifying HF} \to \text{Spirinolactone.} \]

Adverse effects:

- **Hyperkalemia**

\[\text{M/c} \left\{ \text{Metabolic acidosis.} \right. \]

- Long term effect in male - Impotence & androgenic action.

\[\text{Gynecomastia} \]

- in female - Menstrual irregularities.

Drug causing Gynecomastia:

- **D** = Digoxin
- **I** = INH
- **S** = Spirinolactone
- **C** = Cimetidine
- **K** = Ketoconazole
- **O** = Oestrogen/anti-androgen \(\to \) Finasteride

\[\text{T/t of male pattern baldness.} \]
Drug useful in painful Gynaecomastia - Tamoxifen.

Therapeutic effect of Amiloride:

1. T/t of Liddle's Syndrome (↑ ENaC)
2. T/t of lithium induced DI
3. T/t Atezolast - Cystic fibrosis. (Mech not known)

Mannitol - Osmotic diuretics

Site - LOH & PCT

Useful for T/t of
1. Glaucoma (Given i.v.)
2. Cerebral edema
3. Cisplatin toxicity.

Mannitol added to cisplatin to control nephrotoxicity

C/I - Pulmonary edema (LVEF)
Cerebral Hemorrhage

S/E - Hyponatremia
Headache
ANTIDIURETICS

- ADH (Vasopressin)
 - **V_2** Receptor:
 - Location → V_2 seen on medullary portion of collecting duct
 - Action → Water Reabsorption

 - Also seen on Vascular epithelium
 - Action → Releasing VWF & factor VIII

 - Desmopressin:
 - Synthetic analogue of Vasopressin acting on V_2
 -USES: Doc for Cranial diabetes insipidus
 Doc for Nocturnal Enuresis.
 - Useful for Hemophilia
 - """" Bleeding due to deficiency of vWF factor.

- **V_1** Receptor:
 - Seen on Vascular smooth muscle
 - Action → Vasoconstriction

 - **V_1** analogues: Synthetic
 - Terlipressin → Useful to control esophageal varices
 - Pencylpressin
 - Lypressin
 - Doc: Ochotroie
 - Prophylaxis doc: Propranolol

 - # Terlipressin added to lignocaine to prolong the action.

 - Selective V_2 antagonist:
 - Lixivaptan
 - Oral Mozavaptan → Doc for SIADH
 - Tolavaptan
Selective V₁ antagonist:
- Relcovaptan - Useful for HTN
- Nelivaptan - V₁₆ blocker

Undergo clinical trial for lift of Anxiety.

Non-selective V₁ & V₂ antagonist:
- Conivaptan (V₂ > V₁)

⇒ USE: SIADH
 Gwen i.v.

HEMATOLOGY

Thrombolytic Agents:
- MOA - Plasminogen activator ➔ Plasmin (Fibrinolysis)

eg:
- Streptokinase
- urokinase
- alteplase
- Tenecteplase

Antidote of Thrombolytic drugs:
- EACA (Epsilon Aminocaproic Acid)
- Tranexamic acid
- Aprotinin
WARFARIN: Inhibiting vitamin K-dependent factors (II, VII, IX, X)

<table>
<thead>
<tr>
<th>Protein</th>
<th>Half life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor II</td>
<td>72 hrs</td>
</tr>
<tr>
<td>VII</td>
<td>4-6 hrs</td>
</tr>
<tr>
<td>IX</td>
<td>24 hrs</td>
</tr>
<tr>
<td>X</td>
<td>44 hrs</td>
</tr>
<tr>
<td>Protein C</td>
<td>8 hrs</td>
</tr>
<tr>
<td>Protein S</td>
<td>30 hrs</td>
</tr>
</tbody>
</table>

- For full benefit of warfarin occurs, wait for 3 days.
- Not used in acute DVT.
- Useful in prophylaxis of chronic DVT.

- Normal function of protein C → inhibiting factor V & VIII

\[\Theta \]

- Hypocoagulation

- Side effect of warfarin

- Dermal Necrosis due to protein C inhibition.

- Purple toe syndrome

- Warfarin therapy:
 - Narrow therapeutic index (Only INR done)

- Two isomers
 \[R \]
 \[S \text{ (Active)} \]

- CYP2C9 involved in metabolism of Warfarin
- Duration of action → 5 days.
- It undergoes Zero-order kinetics.
Warfarin: $\text{INR} = \frac{\text{Patient PT}}{\text{Control PT}}$

N → 2-3

Prosthetic Value → 2.5-3.5

Long term → 1.5-1.9

GI in Pregnancy → Teratogenic

\[\downarrow \]

Contradict Syndrome

Fetal Chondrodysplasia Punctata

Antidote of Warfarin:

\[\text{Natural VitenK1} \]

\[\text{VitenK2} \]

\[\text{VitenK3} \]

\[\text{Phytonadione} \]

\[\text{Menoquinone} \]

\[\text{Menadione} \]

Takes about 24hrs
to redución INR

For immediate hemostasis — Fresh frozen plasma (FFP)

New Oral drugs — direct IIa inhibitor

Ximelaglaror (Cause severe hepatotoxicity)

— Not used

Dabigatrin

New oral drugs: Direct Xa inhibitors

Apixaban
Rivaroxaban
Edoxaban
Betrixaban
Injecting Anticoagulant acting Via Antithrombin III pathway:

- Heparin (inhibit Xa; IIa)
- LMWH (inhibit Xa)
 - eg: Enoxaparin
 - Dalteparin
 - Fraxiparin
 - Nadroparin

Other injectable drugs acting via Antithrombin III but only inhibiting Xa:

- Fondaparinux
- Edoxaparinex
- Idraparinux

Idrabiota parinex \(\rightarrow \) Antidote \(\rightarrow \) Avidin

Specific antidote for Heparin - Protamine Sulphate

It is chemical antagonist.

1 mg of Protamine Sulphate

Neutralizes 1000 U of Heparin.

Direct Xa inhibitor - Omacoexaban

(Under trial)

Injectable - Direct Thrombin (IIa) inhibitor

- Bivalent:
 - Hirudin
 - Bivalirudin
 - Lepirudin

- Monovalent:
 - Argatroban
 - Eptiexaban (Biliary excretion)
 - Melagatran

These drugs are used in pt. who develop Heparin induced Thrombocytopenia.
Adverse drug reactions:

- Heparin
 - $A = \text{Alopecia}$
 - $B = \text{Bleeding}$
 - $O = \text{Osteoporosis (Supplement Ca)}$
 - $U = \text{Urticaria (Hypersensitivity)}$
 - $T = \text{Thrombocytopenia}$
- Warfarin
 - $A = \text{Alopecia}$
 - $B = \text{Bleeding}$
 - $O = \text{Oral (GI intolerance)}$
 - $U = \text{Dermatitis}$
 - $T = \text{Teratogenicity}$
 - Rarely Hyperkalemia

Monitoring:

- Antiplatelet drugs (Aspirin) — Prolongs BT
- Heparin (Intrinsic pathway) — Prolongs aPTT
- Warfarin (Extrinsic ””) — Prolongs PT
- LMWH — No need of monitoring
- If monitor then Antifactor Xa
 - In Renal failure & Obese pt.

ANTI PLATELETS

Drugs inhibiting synthesis of TX-A2:

- Selective COX-1 inhibitor — Low Dose Aspirin
 - (50mg-160mg)

Thromboxane synthase enzyme inhibitor — DEXOBEN

Drugs inhibiting TX-A2 Receptor:

- IFEPTROBAN
- SULTROBAN
- DALTROBAN
- LOSARTAN (ARB having Antiplatelet action)
- VAPIPROST
Drugs inhibiting synthesis of TX-A2 & blocking action of TX-A2 receptor: Dual action
PICOATAMIDE

Newer drug: SERATRODAST (Thromboxane A2 antagonist).

ADP (P2Y12) blockers:
- Ticlopidine - Prodrug
- Clopidogrel
- Prasugrel
- Ticagrelor
- Cangrelor - Given iv.

Ticlopidine - Not commonly used because thrombocytopenia & Hepatotoxicity.
Clopidogrel - Activated by CYP2C19.

Omeprazol shouldn’t be given with Clopidogrel.
Pantoprazol & Rabeprazol don’t have drug interaction with Clopidogrel.

Glycoprotein IIb/IIIa blocker:
- Abciximab - Monoclonal antibody.
 Given iv
- Eptifibatide
- Tirofiban

PAR1 blocker (Proteinase activated Receptor blocker)
- Vorapaxar
- Atoraxar
Essential Thrombocytoysis:

ANAGRELIDE → Platelet malunion inhibitor.

DOC for Sickle cell Anemia — HYDROXYUREA

Useful in Essential Thrombocytoysis

Drug used for T/t of CCF:

Drugs inhibiting release of Renin:

β-Blocker
Clonidine
Methyl dopa.

Renin inhibitors:

Aliskiren (FDA approved)
Remikiren
Enakiren

ACE inhibitors:

Captopril
Ramipril
Lisinopril
Fosinopril (Renal & Pile exc.,ion)

All ACE inhibitors are Prodrug except Captopril

All ACEi are having Renal excretion.

Action → Vasodilation (Equally dilates Artery & Vein)

Useful for → HTN, CCF, M/E, DM, Proteinuria, Scleroderma.

Nephroprotective.
C/I – ① Pregnancy
② B/L Renal Stenosis
③ Severe Hyperkalemia

Bradykinin antagonist: icatibant

Useful for angioedema & dry cough.

Hereditary angioedema:
C1-esterase inhibitor deficiency.

ICATIBANT

RUCONEST → Human Recombinant C1-esterase inhibitor

Ecallantide [kallikrein inhibitor.

APROPRITIN

DANAZOL → Antagonadotropic & anti-androgen action
(impeded androgen)

Sampatrilat – inhibit Vasopeptidase
Omapatrilat – ACEI

Vasopeptidase: Peptide

ANP BNP URODILANTIN

Fusion – Natriuresis –
Diuresis
Vasodilation

Synthetic Analogue Carperitide Nesiritide Ularitide
Nesiritide:

Synthetic analogue of BNP

Action → Diuresis

Natriuresis

Vasodilatation

Useful for t/l of CCF.

- Given iv, Never oral

- Metabolism → Vasopeptidase
 - Shorter life half life - 20 min

S/E - Severe Hypotension

Other name of Vasopeptidase - Neprilysin (Neutral endopeptidase).

Selective Vasopeptidase inhibitors:

Exadotril

Sacubitril

Omapatrilat - inhibit Vasopeptidase > Dual enzyme inhibitor.

Salupatrilat - ACEi

ARB's:

Losartan

Valsartan

Telmisartan

Olmesartan

Azilsartan

- Indication & CYI same as ACEi.
Losartan:

- Action: Uricosuric action
- TXA₂ antagonist

Telmisartan
- Agonistic action on PPAR γ
 (Peroxisome proliferator-activated receptor)
- So used in T/I of DM.

Aldosterone Antagonist:
- Spironolactone
- Canrenone
- Eplerenone
- Drospirenone

ACEi + Spironolactone \(\Rightarrow \) Severe Hyperkalemia.

Any drug blocking RAS pathway will cause hyperkalemia.

Other drug useful for T/I of CCF

Phosphodiesterase 3 inhibitors:
- Amrinone (Inamrinone)
- Milrinone
- Levosimendan

\(\Rightarrow \) M/C S/E - Thrombocytopenia

M/C S/E of Milrinone - Arrhythmia
Heart failure:

Na⁺-K⁺ pump inhibitor: Isároxime.

Direct myosin activator: Omes camifiv mecabit (śrotnic)

Calcium sensitizer:
- Pimobendan
- Levosimendan (PDE-3 blocker)

Disease modifying drug

Drug reducing mortality in CCF:
- β-Blocker (Carvedilol, Bisoprolol, Metoprolol)
- ACEi
- Angiotensin Receptor Blockers (ARBi)
- Spironolactone
- ISDN + Hydralazine
- Isosorbole dinitrate

Except these drugs, all other drugs control symptoms only in CCF.
GIT

Drug useful for Acid peptic disease (APD):

H2 Antihistamines:
- Cimetidine - Least potent
- Ranitidine
- Famotidine - Most potent
- Roxatidine
- Nizatidine
- Loxatidine

- Basal acid output & nocturnal (more effective)
 So, give at bedtime.

- Renal excretion

* Cimetidine - Antiandrogonic
 CYP enzyme inhibitor
 Least potent

PPI (*H+K+ ATPase inhibitors*):

- Omeprazole (Metabolism by CYP2C19, CYP3A4)
- Esomeprazole
- Pantoprazole
- Lansoprazole
- Rabeprazole

Short half life for less than 2 hr

But acting for longer duration → Hit & Run drug
(Irreversible inhibition of proton pump)

Omeprazole not given with clopidogrel.
Rabeprazole > No significant drug interaction
Pantoprazole (preferred with clopidogrel)
Antacids:

Sodium Bicarbonate

Calcium Carbonate - shouldn't be taken with milk

- bcoz Milk alkali Syndrome.

GELUSIL:

Combination of Aluminium Hydroxide (Constipation) + Magnesium Hydroxide (Diarrhoea)

Ulcer protective drugs:

Sucralfate (Sucrose + Sulphated Aluminium hydroxide)
- Acts only in acid medium (pH below 4)
- It shouldn't be combine with H2 blockers/PPi/antacid.

Bismuth
- Black stool & tongue.
- GI - Renal failure.

Ulcer healing drugs:

Carbenoxolone

\[\text{\textit{c}} \text{.e.} \text{. it displaces aldosterone from protein binding.} \]

Prokinetic drugs:

- Drugs promoting GI motility.

\[\text{D2 antagonist:} \]

- Domperidone

- Metaclopramide
5HT4 agonist:
- Cisapride
- Mozapride
- Tegaserod
- Neosulpride

Cholinergic agonist (M3 agonist):
- Bethanechol
- Neostigmine

5HT3 blocker:
- Ondansetron

Antibiotic having prokinetic action: Macrolide

acting on motilin receptor

of small intestine cause diarrhea.

Among Macrolide - max. prokinetic

Erythromycin

Drug used in Anti cancer / Radiation - drug induced vomiting

5HT3 antagonists:
- Ondansetron M/C QE - Headache
- Granisetron
- Tropisetron
- Dolasetron → QT prolongation
- Palonosetron → Highly selective 5HT3 antagonist

 Long acting (T1/2 = 40h±)

Website: http://mbbshelp.com
WhatsApp: http://mbbshelp.com/whatsapp
Supportive drug: For better efficacy

Ondansetron \rightarrow D_2 blocker \rightarrow BZD, Steroid mixed

- Domperidone
- Dexamethasone
- Methylprednisolone

Antiemetic belonging to Cannabinoids

- Nabiximol \rightarrow Antiemetic + Appetite stimulant
- Dronabinol

2-3 days after chemotherapy \rightarrow Late phase Vomiting

T/t
- Aprepitant (oral)
- Fosaprepitant (i.v.)

Neurokinin 1 antagonist

Palonosetron

IBS
T/t of Constipation dominant IBS:

- Magnesium hydroxide
- Methyl cellulose
- Lactulose syrup \rightarrow Also useful for Hepatic encephalopathy

- Tegaserod \rightarrow 5HT4 antagonist
- Prucalopride

- Lupiprostone \rightarrow CLC-2 (Type-2 chloride channel activator)
Linacotide (Guanulate-cycase-C activator)

Cystic fibrosis transmembrane conductance regulator Activator (CFTR activator)

Cofelemer - Inhibitor of CFTR

USE - HIV drug induced diarrhea.

Antibiotic used for t/t of constipation in IBS:
Neomycin (Orally) -> For t/t of Hepatic encephalopathy
Rifaximin -> Pre-op Bowel Sterilization
Probiotics.

Rifaximin:
Useful for:
1. IBS
2. Hepatic encephalopathy
3. Traveller's diarrhea
4. Pseudomembranous colitis.

For t/t of opioid induced constipation:
Methyl naltrexone (S/C)
Alvimopan (Oral)

Diarrhea in IBS:
5-HT3 antagonist for t/t of diarrhoea in IBS:
Alosetron
Ramosetron
Cilansetron

Alosetron - Rarely cause dangerous problem
It cause Ischemic colitis
So withdrawn
- But if use—give e great caution & Informed consent.
 - Only in female

Other drugs for diarrhea:
 Cholestyramine resin

Opioid for diarrhea:
 Loperamide
 Diphenoxylate + Atropine \(\Rightarrow\) Control addiction.
 Codeine.

For I\(\text{I}^\text{t}\) Abdominal pain:
 Anticholinergic drugs / Muscle relaxant
 Domperidone / property.

Cholecystokinin antagonist:
 Lerglumide / Inhibits GI motility
 Loxiglumide
 Useful for IBS (diarrhea)
BRONCHIAL ASTHMA

- Methylxanthines - Aminophylline, Theophylline → Bronchodilator

- MAO - Adenine antagonism → Lead to seizures

- Non-selective PDE inhibition

Side effect:
- Nausea & vomiting
- Headaches
- Gastric discomfort

Proposed mechanism:

Diuretic → A1 receptor antagonism

Epileptic seizures → A1 receptor antagonism

Cardiac arrhythmias → PDE3 inhibition

M3 Blocker → Bronchodilator

β2 agonist → M1c for acute Asthma

Leukotriene antagonists:

- Arachidonic Acid

 ↓ 5-lipoxygenase

 LTA4

 ↓

 LTB4

 ↓

 BLT

 LTA4

 ↓

 LTC4

 \[\text{Cysteine-\text{LT}_{2}}\]

 Receptor

 ↓

 LTD4

 \[\text{Cysteine-\text{LT}_{4}}\]

 Receptor

 ↓

 LTE4

 \[\text{Cysteine-\text{LT}_{6}}\]

 Receptor
Lipoxygenase Inhibitor
Zileuton

→ Not used 600g Hepatitis

Leukotriene antagonist:
- Zafirlukast
- Montelukast
- Pranlukast

Chronic therapy cause - Churg Strauss Syndrome

Headache
Eosinophilia
Vasculitis

For t/t: Mepolizumab
(IL-5 antagonist)

Mast cell stabilizers:
- Sodium cromoglycate
- Nedocromil
- Ketotifen (Additional Antihistaminic property)

Monoclonal antibodies:
- Omalizumab → IgE antibody agonist.
 → s/c, Hypersensitivity

Newer drug - Reslizumab
Mepolizumab (IL-5 antagonist)
PDE inhibitors:

- **Methyl xanthines**
 - PDE I, II, III, IV
 - Asihua

- **Cilomilast, Rofumilast**
 - PDE IV
 - Asihua

- **Apresmilast**
 - PDE IV
 - Active Psoriasis arthritis

- **Aminimone, Milrinone**
 - PDE III
 - CCF

- **Sildenafil, Vardenafil**
 - PDE V
 - Erectile dysfunction

- **Tadalafil**
- **Pentoxiphylline**
 - Non-selective
 - PVD

- **Cilastazol**
 - PDE III
 - PVD

- **Vinpocetine**
 - PDE I, Vasodilator
 - Parkinson
 - Alzheimer's ds.

Expectorants:

- **Mucolytics**
 - Carbocysteine
 - Methyl cysteine
 - Erabisteme
 - Bromhexane
 - Dorsane alpha
 - N-acetyl cysteine

Cough suppressant:

- Codiene
- Phol codiene
- De xitromethorphan
Antihistamines

1st Generation 2nd Generation

→ Antihistaminic + Anti-Cholinergic action

Use:
- Allergic conditions
- Insect bite
- EDS
- Motion sickness

1st Generation Drugs:
- CPM (Chlorphenarnamine Maleate)
- Promethazine (Most sedative, Highest anticholinergic)
- Diphenhydramine
- Cyclizine
- Meclizine (Useful for Sea sickness)
- Cyproheptadine (Antihistaminic + Anticholinergic + Antiserotonergic action)

Appetizer, Useful in Migraine
- Cause Serotonin Syndrome
- Hydroxyzine (Antihistaminic + Anti-anxiety)
 - produces metabolites - Cetrizine
- Doxepin → Given topically (for itching)
 - TCA - Atopic dermatitis, Lichen simplex
- Cinnarizine (H1, H4, M + 5HT2)
 - Use in Vertigo
 - Betahistine (Histaminergic drug)
2nd Generation drugs:

- Terfenadine → Causes QT prolongation
- Astemizole → Withdrawn
- Ebastine → Still available

- Fexofenadine
- Cetirizine (Metabolite of Hydroxyzine)
- Levocetirizine
- Azelastine (Maximum topical, nasal spray)
- Marezastine
- Terivastin

- Loratidine (longest)
 - Active form: Desloratidine
 - Rupatidine (Platelet-activating factor antagonist)

- Topical antihistamines:
 - Azelastine — Nasal spray
 - Olopatadine — Nasal spray,
 → Ophthalmic drop
 - Mast cell stabilizing — Oral

- Alcaftadine, Epinastine — Eye drop.

- H3 antagonist / inverse agonist:
 - Pitolisant (Tepo reefsant) → Orphan drug
 → T1/2 of Narcolepsy
Prostaglandins

PGE₁:
- Misoprostol:
 - Useful for T/t gastric ulcer (NSAID induced)
 - Used for abortion
 - Teratogenicity → Meesius Syndrome
- Alprostadil
 - Vasodilator
 - Useful for Erectile dysfunction (Given injectable)
 - Useful for maintain patency of ductus arteriosus.

PGE₂:
- Dinoprostone
 - Uterine contracting agent
 - Useful for abortion.
- Eprostil
 - Useful for t/t of Gastric ulcer.
- Risprostil

PGF₂α:
- Carprofest
 - USE: Post partum Hemorrhage (PPH)
- Dinoprost
 - USE: Uterine contracting agent for abortion.

![Latanoprost](Image)
- USE: Glaucoma
- Iris pigmentation
- Tranosprost
 - Causes Unoprostone
 - Use: via Uveoscleral route
 - Hypertrichoses
 - by promoting drainage of eyelash
PGI₂: Prostacyclin
 Epoprostenol - Useful for 1° pulm HTN
 Treprostinil
 Beroprost
 Iliprost

Drug used for 1° pulm HTN:
 1. Inhaled NO - Vaso dilator
 2. CCB (Nifedipine, Diltiazem)
 3. PDE5 blockers → Sildenafil, Tadalafil
 4. Endothelin receptor blocker → Bosentan
 5. Direct guanylate cyclase inhibitor → Riociguat
 6. PGI₂ → Epoprostenol
 Treprostinil
 Beroprost
 Iliprost
 7. New drug → Selexipag (Prostacyclin receptor agonist)
 → Useful for 47% of 1° pulm HTN
 8. Rho kinase inhibitor → Fasudil
NSAID

Blocks both

COX-1 COX-2

Aspirin:
- Analgesic
- Anti-inflammatory
- Prevent Colonic & rectal cancer
- All are property of all NSAID.

Aspirin + Nicotinic acid \(\Rightarrow\) Prevent flushing.

C/I - in t/t viral fever in children \(<12\) yrs.
- Cause Reye's syndrome.
 - Liver damage
 - Encephalopathy
 - Febrile illness

M/C s/e of aspirin & other NSAID:
- Gastric ulcer

Non-selective COX Inhibitor
- Indomethacin
 - Anti-inflammatory
 - Use: Frontal headache
 - Closure of ductus arteriosus
 - Bartter's syndrome
Phenylbutazone
- may cause bone marrow suppression

Ibuprofen - safe in children

Mefenamic acid - useful in dysmenorrhea

Piroxicam - longest acting NSAID

Preferable COX2 inhibitor:
- Nimelide
 ➔ Cause severe hepatotoxicity in children (Unsafe)
- Nabumetone
- Etodolac
- Meluxicam

Highly selective COX-2 inhibitor:
- Rofecoxib
- Celecoxib ➔ Risk of developing HTN & CCF
- Valedoxib
- Etoricoxib
- Parecoxib
- Lumbroxib

Cox-3 blocker
- Paracetamol
 ➔ Causes liver toxicity

Other analgesic: Other than NSAID & opioids:
- Ziconotide (Conotoxin)
 - N type CCB
 - Intrathecal given
For anti-inflammatory action of Aspirin → 300-600 mg
aspirin required & cause \(\text{HCl} \) acid.
\& > 3 mg → Gastric perforation.

Nefopam – Annie uptake inhibitor
\(\text{Na}^+ \text{ channel blocker} \)

Cannabimex – Cannabinoid
\(\rightarrow \) USE – Cancer pain

Entonox – \(\text{N}_2\text{O} + \text{O}_2 \)
\(\rightarrow \) for painless labour.

Drug useful for t/t of Gout:

Acute Gout:
Give NSAID or Steroids or, colchicine

Colchicine \(\rightarrow \) Acting by disruption of microtubule
\(\rightarrow \) Neutrophil drunken walk.
\(\rightarrow \) Diarrhoea (Bloody)
Unsafe in RF

NSAIDs → Naproxen
Endomethacin
Sulindac
\# Aspirin is C/I for gouty arthritis.

Drug used for chronic gout:
Xanthine oxidase inhibitor:
Allopurinol
Febuxostat
6-Mercaptopurine.
Uricosurics:

Probenecid (Unsafe in RF)
Sulfapyrazone
Benzbromaronone
Lesinurad.

Other drug having uricosuric actions are:
Losartan
Fenofibrate
Amlodipine

Newer drug:
For aggressive control of Gouty arthritis
> Give intravenously
 • Rasburicase causes rapid metabolism
 • Pegloticase of uric acid.

Newer drug for T/t of RA:
Normal – Cytokine balance

Pro-inflammatory = Anti-inflammatory cytokines

TNFα, IL-1, IL-6

TNFα blocker:

Infliximab (i.v) Test
Before giving TNFα blocker
TB should be ruled out
PPD test

Immune suppressant
Enanercept (s/c)
Adalinumab (s/c)
Golimumab (s/c)
Certolizumab (s/c)
- All are unsafe in Hepatitis B virus infected pt.

Analogue of Interleukin 1 (IL-1) Receptor Antagonist: ANAKINRA

IL-6 blocker:
- Tocilizumab
- Sarilumab

Newer drug - Rituximab (CD20 receptor antagonist)

Targeting against CD30/86 Receptor
- Abatacept
- Ocrelizumab
- Tofacitinib – JAK 1 & 3 blocker

Use – RA

- Leflunomide

Inhibit dihydro orotate dehydrogenase
SLE – Hepatotoxic
C/I – Pregnancy
ANTI CANCER DRUGS

Cell cycle:

\[M \rightarrow G_0 \rightarrow G_1 \rightarrow S \rightarrow G_2 \rightarrow M \]

DNA synthesis:

- G1 (40%) → Minor development take place.
- S-phase → DNA synthesis
- (39%) By Topoisomerase II enzyme
 Folic acid, Purine, Pyrimidine
- G2 (19%) → Extra development take place
 By Topoisomerase
- M (2%) → Multiplication

Drugs acting on G1 phase:
- L-Asparaginase (enzyme)
- Steroids

- L-Asparaginase
 - Origin from E.Coli (Naturally occurring)
 - Useful for all
 - SE - Hemorrhagic pancreatitis
 - Hypercoagulation
 - No significant Myelosuppression.
 - Thrombomelbic Complications.
Drugs acting on S-phase:
- Anti-metabolites
 - Etoposide
 - Teniposide

Drugs acting on G2 phase: Topoisomerase-1 inhibitors
- Camptothecins < Irinotecan - Chelino unwrapping property.
 - Topotecan
 - Ye - Diarrhoea.
 - (Dose related toxicity)

- Bleomycin (Anticancer + Antibiotic)
 - All anticancer + antibiotics are C-cycle non-specific except Bleomycin.

Drug inhibiting mitosis:
- Vinca alkaloids - Vinblastine, Vinorelbine
- Taxanes - Paclitaxel, Docetaxel, Cabazitaxel

- Newer drug - Ixabepilone > Useful for Breast Ca.
 - Eribulin

For HER2 +ve Breast Ca - Trastuzumab
For Her1 or HER2 - TK Blocker - Lapatinib.
Newer drugs in Cancer therapy:

Tyrosine Kinase inhibitor (TKi's):

- Tyrosine Kinase Receptor - EGFR (HER-1)
- VGFR
- PDGFR

TKi's acting EGFR blocker:

- Gefitinib - Useful for T1E of Metastatic Small Cell lung Ca.
- Erlotinib - Also useful for Pancreatic Ca.
- Afatinib

DOC: Gemcitabine

SI/E - Dysmorphic eyelashes (Erlotinib)

VGFR blocker:

- Sorafenib - Useful for RCC, HCC
- Sunitinib - Useful for RCC, GIST
- Lenvatinib - Useful for DTC

PDGFR blocker

- Imatinib - DOC for CML
 - Useful for GIST (C-kit)
 - 1st gen. TKi

 - due to alteration of C-kit - Resistance
 - T1E of Resistance CML
 - **Dasatinib** - 2nd gen. TKi
 - **Nilotinib**

Multi-targeted TKi:

- Vandetanib - Useful for Medullary Ca Thyroid
 - Target against EGFR & VGFR
- Axitinib - Targeting against VGFR & PDGFR
- Pazopanib - Useful for RCC
TRASTUZUMAB → For HER-2 +ve Breast Ca.

LAPATINIB → Against HER-1 & 2 +ve Breast Ca.

All the TKi are taken orally.
Common S/E - GI toxicity
(Nausea, Vomiting, Diarrhoea)
Any drug block EGFR causes HTN.

Monoclonal antibodies (MABs)

\[
\text{TRASTUZUMAB}\uparrow
\]

Target → Source

\(Tu\) = Tumor
\(Zu\) = Humanised
\(Li\) = Lowering
\(Xi\) = Chimerical (Non human ex. Mice)
\(Ci\) = Target circulation
\(Vi\) = Virus

\[
\text{Basiliximab} - \text{Target against IL-2}
\]
\[
\text{ABCiximab} - \text{Target against GP2B3A}
\]
\[
\text{Pallizumab} - \text{Target against RSV}
\]

\[
\text{Trastuzumab} -
\text{Target against HER-2 receptor}
\text{Useful for HER-2 +ve Breast Ca.}
\]

Most of MAB given by i.v. infusion

Specific S/E → Cardiomyopathy
Infusion reaction
Rituximab:
Target against CD20 on B-cell.
Useful for B-cell lymphoma
Other uses: C = CLL

H = Hemolytic anemia
I = Idiopathic Thrombocytopenic Purpura (ITP)
N = NHL (Non-hodgkin Lymphoma)
A = Arthritis (RA)
M = Myasthenia Gravis.

M/e S/E = PML

Bevacizumab: Target circulation.
Target against VEGFR
Useful for Metastatic colorectal CA (i.v.)

M/e → 5FU
Useful for RCC & Diabetic Retinopathy.

S/E = HTN

Newer drug: RAMUCIRUMAB
- Target against VEGFR
- Useful for Gastric Cancer.

Brentuximab
- Target against CD30 on B cell.
- Useful for Hodgkin lymphoma.
Omalizumab - Target against IgE → USE: Bronchial Asthma (BA)
Resilizumab] - Target against IL-5 → USE: BA
Mepolizumab]
Denosumab - Target against RANK-L → Osteoporosis.
Eculizumab - Target against C5 → Paroxysmal nocturnal hemoglobinuria.
Evolocumab] - Target against PCSK9 → Lipid lowering.
Alirocumab]
Ibalizumab - Target against HIV (entry inhibitor)

Macular degeneration (MD)

Dry type
less blood supply

Wet type
Age related MD (ARMD)

Drugs useful for Wet type MD:
Photodynamic therapy
VERTEPORFIN - i.v.

VEGF inhibitor:
Bevacizumab] - Subretinal inj.
Ranibizumab]
Pegaptanib
Afibercept
Drug for Vitreomacular degeneration:
- Ocriplasmin (Newer drug).

- Bull's eye Retinopathy - Caused by Chloroquine.
- Crystalline Maculopathy - Caused by Tamoxifen.

- Field of Vision defect - Vigabatrin.
- Whirl-like pattern - Already done.

- Kayser-Fleischer ring - Wilson's ds (Ceruloplasmin deficiency).

Chelating Agents:
- Metal $T/↑$
- Copper
- Penicillamine (SLE, optic Neuritis)
- Trienline
- Zinc sulphate (Safest)
- Potassium Sulfide

- Hepatitis or Cirrhosis
 - Zinc
 - $→$ decompensation

- Mild - Moderate hepatic decompensation
 - Trienline $+ Zn$

- Neurological or Psychiatric symptom
 - Triethylenemelamine $+ Zn$

- For maintenance in pregnancy & children
 - Zinc
Metal

Lead
BAL

Arsenic
BAL
C/I in Iron & Cadmium poisoning.

Mercury
BAL

Iron
Desferrioxamine
Desferiprone
Desferroxamine.

DOXORUBICIN

S/E - Cardiomyopathy

Antidote for Doxorubicin poisoning - Desferroxamine.

Anti-metabolites:
Anti cancer + Immunosuppressive.

Drug acting against folic acid:

Meloflaxate

Pemidexate - Useful for Mesothelioma

Trimelizate - NSCLC

Pralatexate - For T-cell lymphoma.

Meloflaxate:

\[\text{N} \quad \text{DHPA} \xrightarrow{\text{DHFR}} \text{THPA} \]

MAO: Meloflaxate actively penetrate into cancer cell
it inhibit DHFR, ultimately inhibiting DNA synthesis, So stop S-phase of cell cycle.

Resistance due to allelism/mutation of DHFR.
Specific antidote - Folic acid or Leucovorin antagonist.

Folic acid can't be given in Renal failure.

GLUCARPIDASE - Newer drug useful for the treatment of Methotrexate toxicity in a patient with impaired kidney function.

USES OF MTX: Anticancer:
- DCC for Choriocarcinoma
- Useful for Osteosarcoma

Immunosuppressant:
- RA (DMARD, low dose 7.5 mg/wk)
- Psoriasis
- Long term therapy.

C = Chorio CA
A = Abortion
N = NHL
C = Chronic C
E = Ectopic pregnancy
R = RA.

S/E - Myelosuppression (M/C)
- Alopecia
- Mucosal damage (GI toxicity)
- Liver damage (on chronic therapy - in RA)
 → Undergo LFT
 Crystalluria
 → Lithotripsy & Alkalization.

Website: http://mbbshelp.com
WhatsApp: http://mbbshelp.com/whatsapp
Antibiotic causing Crystal
Ciprofloxacine (Alkaline)
Sulfonamide (Acetic)

Antiviral
Indinavir → HIV
Causin Crystal Acyclovir

C/I of MTX - Pregnancy.

Purine Anti metabolites:
6 - Thioguanine
6 - Mercaptopurine
Fludarabine → Doc - cell
also useful for Cladribine → Doc - hairy cell leukemia
Multiple Sclerosis Pentostatin

6 - Mercaptopurine:
6 - Mercaptopurine
\[\rightarrow \text{HGPRT enzyme} \]
6 - Thioctic Acid

Cause of Resistance - Deficiency of HGPRT enzyme
(Lesch-Nyhan Syndrome)

6 - MP normally undergoes excretion (metabolism)
by HGPRT.
If we give Xanthine oxidase inhibitor - ↑ plasma level
of 6MP.

When we give Allopurinol the 6MP
reduce the close 50-75% of 6MP.
Drugs useful for Multiple Sclerosis (MS):

Disease modifying drugs:
- Interferon Beta 1A & 1B
- Glatiramer Acetate
- Natalizumab (α4β1 integrin) (iv once in 2 months)
- Teriflunomide (oral)
- Dimethyl fumarate
- Cladribine (oral)
- Alemtuzumab (Antibody)
- Milotuzumab (Anti-cancer + Antibiotic)
- Tefgalimod (oral)
- Dalfampridine (oral)
- Prolacitin
- Pyrvinium Pamoate
- Pregabalin

Teriflunomide:
- Useful for Lambert Eaton Syndrome
- Useful in MS in improving walking
- Derivative of Leflunomide
- Use in pregnancy & MS

Pyrazinamide Antibiotics:
- Cytarabine (Cytosine arabinoside)
- Capricitabine (cause cerebellar ataxia)
- 5Fu
- Gemcitabine (Doc for Pancreatic Ca)
- Hydromorphone
- Levamisole

Capacitabine (cause hand foot syndrome)
Gemcitabine - Myelosuppression
Fell-like symptom
Very potent radio sensitizer.
Doe for Pancreatic Ca

Drug causing Hand foot Syndrome:
Capecitabine
5-FU
Doxorubicin
IL-2
Pemerezhed.

Anti-cancer Antibiotics:
Actinomycin D (Dactinomycin)
⇒ Causes Radiation recall phenomenon.

Doxorubicin - Anthracyclines
[Protect spectrum ⇒ Doxorubicin]
⇒ Inhibit Topoisomerase II

Mitoxantrone
⇒ may cause blue colour fingernails, sclera & urine

Mitomycin
 Bleomycin
Mithramycin (Plicamycin)
⇒ Useful for hypercalcemia

Doxorubicin:
- Causes dilated Cardiomyopathy (DCMP)
- Doxorubicin is in presence of iron form free radical injured myocardium

⇒ Trentaloxane + Alpha tocoherol (vit-E)
⇒ Chelator ⇒ antioxidant
Mitomycin:
- Useful for urinary bladder Ca.
 Usually Intravesical therapy: BCG
 For BCG resistance - Mitomycin Valrubicin
- Useful for laryngo-tracheal stenosis.
 due to Anti-fibroblastic action.

Bleomycin:
 Cell cycle specific acting on G2 phase of cell cycle.
 M/C S/C - Pulm. fibrosis.

Bleomycin hydrolase is not seen in lung.
 so large accumulation of Bleomycin in lung.

Type I pneumocytes - Necrosis/destruction
Type II " - Hyperplasia/ Metaplasia.

Anticancer drug & No myelosuppression:
 Vincristine -> Cause Peripheral neuropathy.
 Bleomycin
 Asparaginase cause Pancreatitis
 Hypercoagulation
Acylating agents:

Busulfan

[Nitrosourea → Lomustine]
Semustine
Carmustine
Delayed myelosuppresast.

Highly lipid soluble

Useful for:

Temozolamide → also for Melanoma.

Streptozocin (Chemical Pancreatectomy).

Chlorambucil (USE: CLL)

Cyclophosphamide, Ifosfamide

Melphalan (Use for Multiple myeloma)

Procarbazine, Vincristine.

Thiotepa

Mechlorethamine.

→ Cause skin vesicant

 Procambazine -

• Disulfiram like reaction

• Among the acylating agent Procambazine & Melphalan cause secondary cancer.

Cyclophosphamide - less secondary cancer.

• MAO inhibitory action

 Drugs for Multiple myeloma:

Melphalan

Thalidomide

Lenalidomide

Bortezomib (Proteasome inhibitor)

g→ DOC

→ Punch out lesion.
Cyclophosphamide (Anti-cancer + Immunosuppressive):
- Prodrug.
 In liver it forms Aldophosphamide
 Phosphoramido Acrolein (Toxic)
 mustard

DOC for Wegner's granulomatosis:
M/c SE - Hemorrhagic cysts
 → Due to Acrolein

Antidote - MESNA
Supportive drug - Formalin
 N acetyl cysteine
 Carboxprost (PGF2α agonist)
 USE:
 Paracetamol poisoning
 Radiocontrast
 Nephrotoxicity
 Mucolytic

Cyclophosphamide cause < SLDH
 Cardio-toxicity.

Ifosfamide:
 Active form - Acrolein
 ↓ Antidote
 MESNA

Drug Q1 in Melanoma - LEVODOPA
Drugs for Multiple myeloma:
- Temozolomide
- BRAF V600E inhibitor - Vemurafenib
- Dabrafenib
- Tuvacafenib

Newer drug - Nivolumab
- Opelimunab

Aleleucin - IL2
- ULE: RCC, Multiple Myeloma

Busulfan:
- Used for CML
- S/E - Pulm. fibrosis
- Adrenal insufficiency (Addison's)
 - Hyperpigmentation

All alkylating agent action - N7 Guanine Residue
All "are cell cycle non specific"

S/E of alkylating agent - Venocclusive ds of livers

(Budd Chiari Syndrome

Minimized by DEFIBROTIDE

- Permanent sterility
Least emetogenic - Vinblastine
Chlorambucil

Cisplatin:
 Highest emetogenic
 S/E - Ototoxicity
 Nephrotoxicity (dose limiting toxicity)
 Neurotoxicity

Antidote - Amifostine

Carboplatin:
 S/E - Myelosuppression

Oxaliplatin:
 S/E - Neurotoxicity
 Pharyngeal paraesthesia

Vincristine:
 S/E - Peripheral neuropathy (Sensory & motor)
 SLADH
 Vesicant

 Advantage - less myelosuppressant
 less nausea

Vinblastine:
 - Myelosuppression

Taxane (Paclitaxel, Docetaxel):
 - Myelosuppression
 - Peripheral neuropathy (Glove & Stock Neuropathy
 - Allergy
Role of hormones in Cancer:
For all premenopausal women with Breast Cancer, the 1st line choice is SERM. If Resistance give SERD.

For postmenopausal women with ER+ Breast Cancer, give Aromatase inhibitor.

SERM useful for t/t of Breast Ca:
Tamoxifen
Toremifene
Novoxifen
Raloxifene.

Tamoxifen—
Antagonistic action only on ER of Breast → Useful for t/t ER+ve Breast Ca.

Agonistic action on blood vessel

ADR—Hot flushes
Endometrial cancer
DVT
Raloxifene:
Antagonistic action on Breast → So use in BreastCa.

""" Uterus

S/E - Flushing
DVT
Not cause Endometrial Ca.

Aromatase Inhibitors:
Aminogluthethimide (Chemical adrenalectomy)
Formostane
Exemestane
Vorozole
Fadrozole
Letrozole
Anastrozole

Extra information:
SERMs for DUB: Ormeloxifene
(Centchroman)
- Use as Contraceptive pill.
Twice in wk 5 gap of four day - first
3 month later once in a week.

SERMs for Dyspareunia - Ospreoxifene

SERMs for induction of Ovulation - Clomiphene.
SPRM:
- Ulipristal - Emergency Contraceptive (Can take 5 days after
 Coitus)
- Aprotinin
- Terapristone - Useful in Uterine fibroid
 Endometriosis

Prostatic Cancer:
 Becoz of excess androgenic action.

Hypothalamus
 (GnRH) - Pulsatile release
 \(\theta \)
 (60-120 min)

Pituitary
 (Gonadotropins - LH/FSH)
 \(\theta \)

Testes
 PSH \rightarrow\text{ spermatogenesis} \leftrightarrow\text{ Seminiferous cell}
 LH \rightarrow\text{ Leydig cell - Testosterone production}
 \overproduction\text{ Cause Prostatic Ca.}

Drugs \& Testosterone production:
1. GnRH agonist (in continuous manner):
 - Leuprolide
 - Goserelin
 - Buserelin
 - Nafarelin
 - Desoerlin
 - Histrelin
 - Triptorelin
GnRH antagonist:
- Genirelix
- Cetorelix
- Abarelix
- Degarelix

Comparison:

<table>
<thead>
<tr>
<th>Agonist</th>
<th>Antagonist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial flare up</td>
<td>No initial flare up</td>
</tr>
<tr>
<td>Histamine release</td>
<td>No histamine release</td>
</tr>
</tbody>
</table>

Testosterone cause:
- Hot flush
- Loss of libido
- Impotence
- Sarcopenia (Reduce muscle mass)
- Osteoporosis
 - Supplement Vit D
 - Bisphosphonates
 - Denosumab

Drugs having histamine releasing property:
- a-Tubacurarine
- Morphine
- Dexseroxamine
- Amphotericin B
- Polymyxin B
- Vancomycin (Red Man Syndrome)
Anti androgen:
- Flutamide
- Nilutamide
- Bicalutamide
- Enzalutamide
- Cyproterone
- Abiraterone.

Thalidomide:
- Sedative + Anti-emetic
- S/E - Phocomelia
- GI - Pregnancy,
 Category X.

- It has Anti-cancer + Immune modulation property.
 Indication: Multiple myeloma
 ENL
 Aplastic anemia
 SLE.

Isomer < R (Therapeutic use & Teratogenicity)
S (Sedation)

M/c S/E - Constipation
 Severe peripheral sensory neuropathy.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Antidote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexiatrastate</td>
<td>Folinic acid</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>Deoxazoxane</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>Mesna</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>Amifostine</td>
</tr>
<tr>
<td>Palifermin</td>
<td>Myelositis</td>
</tr>
</tbody>
</table>

Drugs useful for HT neuropenia:

- Colony stimulating factor (CSF)
 - rG-CSF
 - GM-CSF
 - Filgrastim
 - Sargramostim
 - Pegfilgrastim
 - Mlgr支持

Drug useful for Anemia:

- Epoetin (Recombinant - Erythropoietin)
- Darbepoetin
- Peginesatide (Erythropoietin Receptor Stimulant)

Drug useful for Thrombocytopenia:

- Oprelvekin (IL-11)
- Thrombopoetin

Neuer [Romiplostim(®) for ITP → by plasma exchange

- Drug [Eptremboag
 → Oral]
Anti-emetic useful for Anticancer Eft:
Already done.

Immuno suppressant:
- Cyclosporin
- Tacrolimus (FK506)
- Sirolimus
- Everolimus

Drugs inhibiting synthesis of IL-2:
- Cyclosporin → Calcineurin inhibitor.
- Tacrolimus (FK506)

Both cause Nephrotoxicity
- Tacrolimus > Cyclosporin

Tacrolimus - Macrolide comp.

Common problem - Nephrotoxicity (Dose limiting).
- Neurotoxicity
- Hepatotoxicity
- DM
- Diarrhea
- Alopecia

Specific use of Cyclosporin - Hypertrophy of Gum

Hirsutism

HTN → T/t: Nephrotoxic,
Hyperkalemia
Hypokalemia → Cisplatin, Amphotericin B.

m-Tor blockers:
- Sirolimus
- Everolimus

Azathioprine:
- Purine anti-metabolite
- Immunosuppressant action (CMI)
- No anti-cancer action.

USE — RA
- IBD (U. colitis)
- Organ transplantation

S/E — Myelosuppression

Azathioprine converted in body → 6-Mercaptopurine

Metabolism by Xanthine Oxidase.

Immunostimulants:
- Cytokines
- Aleutokinin (Recombinant IL-2) (for REC & MM)
- Interferon γ (Chronic granulomalous disease)
- BCG Vaccine (Intra vesicle - Urinary bladder Ca)

Valrubicin, Mitomycin
Laryngotracheal Stenosis
Levamisole (Anti helminthic property)
- Immuno stimulant.

IL- modulators:

Analogue of IL-1 receptor antagonist: Anakinra
 (USE - RA)

IL-3 & 4 antagonist: Pitrakirna
 (USE - BA)

Analogue of IL-2: Aldebulimab
 (USE - RCC, Malignant Melanoma)

IL-2 receptor blocker: Basiliximab
 Daclizumab.

IL2 + Diphtheria toxin: Denilukin diphthera
 USE: Cutaneous T cell lymphoma

Histone deacytalase inhibitor
 Vorinostat
 Romidepsin

IL-5 blocker: Resilizumab (Severe eosinophilia, BA)
 Mepolizumab
 USE: Hypereosinophilic syndrome
 Churg Strauss syndrome.

IL-6 blocker - Toceлизumab
 USE - RA

IL-1, 6 antagonist - Steroids

Analogue for IL-11 - Oprolukin
 USE - Thrombocytopenia.

IL-17 Blocker - Ilekizumab
 USE: plaque psoriasis.
 Brodalumab
IL 12 & 23 - Ustekinumab

\[\text{USE} \rightarrow \text{Psoriasis} \]

- Apatant, Lexipafant, (PACBlocker) - For Acute Pancreatitis
- Iviqimod - For Cystic Fibrosis
- Iviqimod - For Chondromatosis (HPV)
- Alefacept - For Psoriasis
- Resiquimod - For HSV
- Lu-Dotatate - For Midgut endocrine tumor
- Anagrelide - For Essential thrombocytosis
- Belimumab - For SLE
- Defibrotide - For Budd Chiari Syndrome
- Hydroxyurea - For Sickle cell anemia
- Olapalib - For ovarian Cancer
 - Acting by Poly ADP ribose polymerase (PARP) inhibitor.
- Palbociclib, Amebiciclib, Ribociclib - For Breast Cancer
 - CDK 4/6 (cyclin dependent kinase) inhibitor
- Edoxavone - (Antioxidant) for ALS

- Mycophenolate mofetil - Inhibit inosine monophosphatase (Immunosuppressant) dehydrogenase
- Penlo statin - Inhibit Adenosine deaminase
- Vorinostat - Inhibit histone deacetylase
- Leflunomide - Inhibit dihydroorotate dehydrogenase
 - Toxicity caused
- Cyclosporine - Nephrotoxicity
- Leflunomide - Hepatotoxicity
- Sirolimus - Bone marrow suppression
- Azathioprine - Hypertriglyceridemias
- Muromonab - Cytokine release syndrome
ANTIMICROBIAL DRUGS

Antibiotic acting by inhibiting cell wall synthesis:

\[\text{N-acetyl muramic acid} \]
\[\text{N-acetyl glucosamine} \]
\[\text{Acid peptides} \]

Step 1:

The first enzyme initiating cell wall synthesis
- Alanine ligase/Racemase

\[\text{Cycloserine} \]
\[\text{2nd line drug of TB} \]
- Bacteriostatic
- SPE - Psychosis

Step 2:

Enolpyruvate-Transf. \(\rightarrow \) Fosfomycin
\[\text{For UTI} \]
- Cause severe diarrhea
- So not in use.

Step 3:

Dephosphorylation of Baclofenol \(\rightarrow \) Bacitracin
- Polypeptide group of Antibiotic
- USE: Wound/skin healing
 (Given topically)

Step 4:

Elongation of peptide chain
\[\text{\(\rightarrow \) help of Transglycosylase} \]
\[\text{\(\rightarrow \) Vancomycin} \]
- If Alter \(\rightarrow \) VRSA
Step 5:
Cross linking of elongated peptide chain
by Transpeptidase \(\rightarrow \) Beta Laclain
(Penicillin binding protein) (Penicillin)

If alleviated \(\rightarrow \) MRSA
(Resistence)

Inhibiting Antibiotics acting by protein synthesis:

Aminoglycosides \& Tetracycline binding \& 30s Ribosome \& inhibit protein synthesis.

Drug acting on 50s Ribosome \& inhibit protein synthesis:

Chloramphenicol \(\xrightarrow{\text{Resistance due to enzyme degradation}} \) Acetyl transferase

Linomycin

\(M = \) Macrolides

\(L = \) Lincosamides (Clindamycin)

\(S = \) Streptogramines

MLS resistance \(\rightarrow \) Methylation of 50s ribosomes.

Tetracycline resistance \(\rightarrow \) Development of efflux pump.

Tetracycline - Resistance to efflux.

Due to enzymatic degradation \(\rightarrow \) Aminoglycosides

Resistance

Do not develop [Amikacin resistance - Nefilmicin]
All antibiotics acting by inhibiting protein synthesis are bacteriostatic except for Aminoglycoside and Streptogramins.

Antibiotics

Penicillin:

- Commercial source - *Penicillium chrysogenum*.

- Acid Resistant: Orally.
 - V = Penicillin V
 - O = Oxacillin
 - D = Dicloxacillin
 - R = Cloxacillin
 - A = Ampicillin/Amoxicillin

- Penicillinase resistant:
 - C = Cloxacillin
 - O = Oxacillin (hepatitis)
 - N = Nafcillin (Neutropenia)
 - D = Dicloxacillin
 - U
 - M = Meloxicillin (Interstitial nephritis)

- β-Lactamase inhibitor:
 - Clavulanic Acid + Amoxycillin
 - Sulbactam + Ampicillin
 - Aztreonam + Piperacillin

- # FDC (Fixed drug combination):
 - Same volume of distribution
 - Or same half-life
Extended spectrum Penicillins:

Aminopenicillins → Enterococci

Beta-lactamase

Amoxicillin → Causing diarrhea due to incomplete absorption.

Carboxy penicillins (Enteroaggregates + pseudomonas)

Carbenicillin → Cause bleeding due to disturbing platelet.

Ureidopenicillins

(Enteroaggregates + pseudomonas + Klebsiella)

Azlocillin

Piperacillin

Mezlocillin

Aminopenicillins are 1/3 in Infectious mononucleosis;

2nd line Anti TB 1/1 in HIV pt & TB: Thiacetazone

#

OCP + Amoxicillin → Risk of OCP failure

Skin Rash:

- Jarisch Herxheimer Reaction
- Secondary Syphilis
- No treatment
- Only symptomatic - Aspirin & Sedation

Atypical beta-lactam antibiotics:

Carbapenems:
- Imipenem
 - Broadest spectrum
 - Shortest acting
 - Rapidly undergo inactivation by
 Dehydropeptidase 1 enzyme.
- Add Cilastatin

S/E - Seizures

- Meropenem
- Ertapenem

Monobactams:
- Aztreonam
 - No cross reactivity
 - Useful for Aerobic gram-negative infection
 Similar to aminoglycosides

for Anaerobic infection - Metronidazole

- Clindamycin
 - S/E - Pseudomembranous
 Colitis
Cephalosporins

Fourth generation drugs:
- Cefepime
- Cefpirome
- Cefclidin

Fifth generation drugs:
- Ceftrabiprole
- Ceftraroline

USE - MRSA
Community Acquired Pneumonia

Glycopeptide Antibiotics: Vancomycin

- IV of GM +ve infection
- Oral Vancomycin - Useful for Pseudomembranous colitis
- IV Vancomycin - DOC for MRSA
 - Caused by Clostridium difficile
 - Caused by 3rd gen. Cephalosporins

Newer drug for PMC - Rifaximin
- Fidaxomicin

ADR of Vancomycin: Red Man Syndrome (M/c)
- Ototoxicity
- Nephrotoxicity
Other Glycopeptide antibiotics:

- Telavancin
- Dalbavancin - longest acting (6-10 days)

Drugs used for T/c MRSA/VRSA:

VRSA → Linezolid

- SLE - Thrombocytopenia (M/C)
- Ophthalmic & peripheral neuropathy
- Also used for MDR TB
- MAO inhibitory property

VRSA → Streptogramine

- Quinupristine : Dalbopristine = 70:30
- SLE - Infusion reaction
- Arthralgia

VRSA → Daptomycin

→ causing myopathy

VRSA → Tigecycline

- Given in tetracycline
- Resistant to efflux
- Excretion - Bile
- Safe in Renal failure
Sulfonamides:

- Sulfasalazine
 - On GIT split in 2 components
- Sulfapyridine
 - 5 amino salicylic acid.
 - Useful for RA.
 - Useful for ulcerative colitis

ADR – Allergy

- Oligospermia (in male) → Infertility.

Topical – Sulfacetamide – For eye drop.

- Silver sulfadiazine – Has anti-pseudomonal action
- Metronidazole → CA inhibitory action
 - Metabolic acidosis.
 - Useful for fungal keratomycosis.

- Sulfadoxine + Pyrimethamine → For 7/1 of Malaria.

- Toxoplasmosis:
 - For 1/t: Sulfadiazine + Pyrimethamine + Folic acid.

Safest drug for 1/t of Toxoplasmosis in pregnancy
- Spiramycin (Macrolide)

- Cotrimoxazole: Sulfamethoxazole (400mg) + Trimethoprim (80mg).
- Cotrimoxazole DS: Sulfamethoxazole (800mg) + Trimethoprim (160mg).

DOC: Pneumocystis carinii pneumonia.
Aminoglycosides.

For 1st of TB → Streptomycin (1st line drug)
 Kanamycin
 Apramycin [2nd line drug]
 Amikacin

- All are ionised molecule so not absorbed via orally.

Streptomycin – DOC for Plague (mass prophylaxis)
 Doxycyclin

Also useful in – TB, Tularemia.

Aminoglycoside useful for Pseudomonas:
 T = Tobramycin
 A = Amikacin
 G = Gentamycin

Among Cephalosporin
 - Ceftazidime
 - Cefoperazone

For severe Pseudomonas infection – TOC is combination of Cephalosporin & Aminoglycoside.
 eg: Ceftazidime + T or A or G.

Last option for severe resistance case of Pseudomonas
 → Polymyxin B.
Paraamomycin -
Oral - Amoebiasis
i.v. - Kala-azar.

Neomycin:
- generally parenterally
- Oral - Gut sterilization
- Hepatic encephalopathy

Aminoglycoside follow conc dependent killing pattern
so given OD dose.

Beta lactamin follow Lin's dependent killing
so given TDS / QID.

Post antibiotic effect of Aminoglycoside:
Even though the drug level is lower than the MIC value still produce action.

Common s/e of Aminoglycoside:
- Nephrotoxicity
- Ototoxicity
- Neuromuscular block (Neomycin)

Among the Aminoglycoside - Gentamycin highly
Tobramycin / Nephrotoxic
Neomycin
least Nephrotoxic - Streptomycin
Maximal deafness caused by - Kanamycin
(Amikacin) Max
Neomycin

Deafness 1st high frequency sound \(\rightarrow\) lastly low frequency sound.
First damage base of hair cell \(\rightarrow\) lastly apex of hair cell.

Vestibular damage - Streptomycin
Gentamycin
Equal - Tobramycin
Least - Netilmicin

Quinolones:

MOA: inhibits DNA Gyrase in Gram -ve
inhibit Topoisomerase IV in Gram +ve.

Route of Excretion - Kidney.
\(\rightarrow\) So not given in Renal failure.

Excretion via liver - Prefloxacin
Trovafloxacin \(\checkmark\) (Safe)
Moxifloxacin

Ciprofloxacin:
DOC for Typhoid
\(\rightarrow\) Currently 1st line choice
- Ceftriaxone (iv)
\(\text{(in children/ Pregnancy)}\)
or in Ciprofloxacin Resistance.
Drug interaction of theophylline:
Ciprofloxacin is microsomal enzyme inhibitor, When given with theophylline, theophylline level ↑ in plasma which causes convulsion/seizures.

Withdrawn Quinolones:

- Trovafloxacin – liver toxicity
- Grepafloxacin – QT prolongation
- Gatifloxacin – unpredictable glucose profile
- Only systemic use was withdrawn
 Eye drop available

Clinafloxacin – Phototoxic
available
- Sparfloxacin (longest action)
Quinolones – Lomefloxacin

Macrolides:

Clarithromycin:
Useful for – MAC
 H. pylori
 Leprosy

Azithromycin:
Useful for – MAC
 Gonococci / Syphilis / Chancroid
 Chlamydia
 Legionella
 Campylobactor jejuni
Common SE of Microlites:
- GI toxicity → due to motilin
- Hearing Impairment
- Hepatitis
- Cholestalic jaundice caused by erythromycin estolate
- Erythromycin estolate

Drug interaction:
- All microlites are microsomal enzyme inhibitor
 Erythromycin → Maximal microsomal enzyme inhibition
 Azithromycin → Least microsomal enzyme inhibition
 # Azithromycin may cause QT prolongation

Erythromycin aggravates pyloric stenosis.

Tetracycline

Tigecycline -
Given i.v.
Useful for MRSA/VRSA
Excreted by bile, so safe in kidney failure.

Doxycycline -
Excreted via bile, safe in RF

Demeclocycline -
Phototoxic
Causes DI
Useful for SIADH.
Minocycline:
Used for leprosy.
\[\rightarrow \text{Rifampicin} \]
\[\text{Oxytetracycline} \]
\[\text{Minocycline} \]

\# Vestibular toxicity.

\# All tetracycline having risk of causing elevation of IOT called pseudo tumour cerebri.

\# Outdated tetracycline may cause Fanconi syndrome.

\# Tetracyclines are DOC for:
1. Rickettsia infection
2. Chlamydia infection
3. Lymphogranuloma venereum (LGV)

Tetracycline used as prophylaxis of:
- Cholera
- Brucellosis
- Plague

GI in pregnancy — Fulminant hepatic failure
Baby < Bone & teeth problems.

Most safest antibiotics in pregnancy -> β-lactam
Cephalosporin & Penicillin > Azithromycin
Antibiotic & Colour association:
- Grey baby - Chloramphenicol
- Yellow baby - Sulfonamide
- Red man Syndrome - Vancomycin
- Discoloured teeth - Tetracycline
- Coffee coloured teeth - Nitrofurantoin
- Loss of red/green perception - Ethambutol
- Reddish black - Clofazimine

Tuberculosis

Anti-tubercular drugs:
- Isoniazid (INH):
 - Activated via the help of INH A-gene & catalase peroxidase.
 - MOA: Inhibiting mycolic acid synthesis.
 - Undergoes metabolism by acetylation.

SLE - Hepatotoxicity (MC)
 - Due to formation of Acetyl hydrazine
 - Neuropathy
 - Slow administration of Vit B6
 - Prophylactically - 10mg/day
 - Neurotoxicity - 100mg/day
 - Memory impairment
 - Psychosis
 - Shoulder hand syndrome
 - SLE
 - Cheese Reac
It is micro enzyme inhibitor.

Doesn't require dosage adjustment in pts with renal disease.

Useful for prophylaxis of TB.

Max CSF penetration.

Isoniazid → derivative of isoniazid.

Used for elevating mood.

Rifampicin:
- Activated to help of rep B gene.

MOA: Inhibit DNA dependent RNA polymerase.

- Excretion via bile & feces

 So safe in RF.

Side - Non serious:

Reddish orange colour (Urine, Sweat & tears)

Staining of contact lenses.

Serious:

Hepatitis

Respiratory syndrome

Hemolytic

Purpura.

It is microsomal enzyme inducer.

pt of HIV Receiving antiviral drug, if we use Rifampicin for TB, liver failure occurs.

Alternate drug → Rifabutin → Causes Pseudo jaundice.
Pyrazinamide:
- Act by inhibiting mycolic acid synthesis.

S/E - Hepatotoxicity
Hyperuricemia

- No drug interaction bcz neither microsomal enzyme inducer or inhibitor.

- Undergoes renal route of excretion so need dosage adjustment in RF pt.

Ethambutol:
- Bactericidal

MOA: Inhibiting Arabinogalactan synthesis.

S/E → optic neuritis
- Loss of ability to differentiate red from green
- Supplement of HydroxycoBALAMINE (Vit B12)
- Hyperuricemia

- Undergoes renal route of excretion
 - Need dose adjustment in RF pt.

Streptomycin:
- CL in pregnancy bcz cause permanent deafness in children.
TB in liver as pt:
Avoid - Isoniazid, Rifampicin, Pyrazinamide
Safe - Streptomycin, Ethambutol

TB in a Real pt:
Avoid - E, P, S
Safe - R, H

Newer drug for MDR-TB:
Bedaquiline:
Inhibit mycobacterial ATP synthase
Good absorption
Cross resistance to clofazimine
May cause QT prolongation
→ Cardiotoxicity

Delamanid
Pretomanid
Inhibit Mycolic acid synthesis

Safegolid - Derivative of linezolid

Anti TB drug causing:
1. Hypothyroidism – Ethionamide (also used for leptospirosis)
2. Psychosis – INH, Cycloserine

Antibiotic useful in MAC = Azithromycin,
Clarithromycin
REC Regimen (R = Rifabutin, E = Ethambutol, c = Clarithromycin)

4. Uveitis - Rifabutin

Anti-leprosy drug.

- ATT drugs → Rifampicin
 Ethionamide

Other drug → Clofazimine
Dapsone

- Antibiotic useful for leprosy - Ofloxacin
 Minocyclin
 Clarithromycin

Dapsone - Sulphonamide

Uses of Dapsone –
 DOC for dermatitis herpetiformis.
 # Inj. Ac dapson (im) one dose acting for 3 months.
 GE - Allergy (M/C)
 Hemolytic Anemia.

Clofazimine -
 Bacteriostatic
 Anti-inflammatory property.
 Also useful for lepra reaction.

GE - Reddish black skin discolouration
 Dermatological.
Leprosy Reaction:

Type I - Cell mediated immunity to M. leprae.

Type IV hypersensitivity.

T&O - Prednisolone (Steroid).

Type II - Immune complex deposition.
 Type III Hypersensitivity.

T/t - Steroids
 Clofazimine
 Chloroquine

Virology.

Drugs useful for HIV:

Fusion inhibitors:
 Enfuvirtide
 - Given SC
 S/F injection site reaction
 Pneumonia (Rare)

CCR-5 inhibitor:
 Maraviroc - FDA approved
 Aplaviroc [under trial]
 Vicriviroc
NRTI's (Nucleoside Reverse Transcriptase inhibitor):

Zidovudine (M/C)

- Myelosuppressant (Macrocytic Anaemia)
- Lipodystrophy → due to mitochondrial DNA polymerase

Didanosine

- Pancreatitis

Stavudine - Worst drug:

- S/E - Severe Neuropathy
- Lactic acidosis
- Lipodystrophy

Abacavir (Rule out HLA B5701 allele, MI, Safe in RF)

Zalcitabine

- Also useful for HBV

Lamivudine - Best drug (No serious adverse effect)

- Emtricitabine

Tenofivir - Causes GIT toxicity, Fanconi’s syndrome.

- Really a nucleotide inhibitor.

NNRTI:

1st generation:

- Efavirenz
- Nevirapine, NVP
- Delavirdine

2nd gen:

- Etravirine
- Rilpivirine

Common S/E - Skin Rash
- Stevens Johnson Syndrome
- Toxic epidermal necrolysis
Nevirapine
 \(\rightarrow S/E - Hepatitis (LFT) \)
Efavirenz
 \(\rightarrow S/E - Neuropsychosis \)

Integrase inhibitor:
 Raltegravir
 Elvitegravir \(\rightarrow \) Best drug.
 Dolitegravir

Protease inhibitor:
 Saquinavir \(\rightarrow \) Best tolerated
 Indinavir \(\rightarrow \) Nephrolithiasis
 Nelfinavir
 Rifabavir \(\rightarrow \) Powerful microsomal enzyme inhibitor \(\text{(CYP3A4)} \)
 \(\rightarrow \) Called Booster.
 Amprenavir
 Fosamprenavir
 Atazanavir \(\rightarrow \) Not cause lipodystrophy.
 Lopinavir.
 \(\rightarrow \) may cause intracranial hemorrhage.
 Tipranavir \(\rightarrow \) Sulfonamide
 Darunavir

Common S/E - Hyperglycemia
 Fat redistribution
 Hyperlipidemia.
Tezamorelin - GHRF

- Reduce abdominal fat in HIV & lipodystrophy.

CROFLEMER - CFTR inhibitor

- Use - HIV induced diarrhoea.

Malanin inhibitor.

- Bevirimat (Under Trial)

HAART / CART (Highly active antiretroviral therapy):

- 2 NRTI + 1 NNRTI
- NRTI + NNRTI + PI

Triple drug therapy

- To prevent drug resistance.

NACO 2011 → Zidovudine + Lamivudine + Nevirapine.

CMV (Cytomegalovirus) → Cause Retinitis.

- Ganciclovir (DOC)

- Use for 5/3E - Myelosuppression.

- Valganciclovir
- Fomivirsen
- Foscarnet
- Cidofovir
- Maribavir

Foscarnet:

- Useful for HSV (resistant to Acyclovir)
- CMV (Ganciclovir resistance)

ADR - ARF

- Penile ulcer.
Cidofovir – Useful for Reap* papillomatosis.

Drug for Herpes simplex Virus

Acyclovir – For HSV
ADR – Renal Failure

Docosanol – Viral entry inhibitor
given topically

Famciclovir – Prodrug
Active form – 6-deoxy penciclovir.

Drug Useful for Hep B:
Injection are < IFN-α
PEG-INFα

Oral agents:
1st line – Entecavir
Tenofovir (ant-HIV drug)

2nd line – Lamivudine
Adefovir
Telbivudine
Drugs for HCV:

Commonly use PEG INFα plus ribavirin.

Sofosbuvir - Given orally
Renal excretion
Causes bradycardia

Other drugs -

Telaprevir
Boceprevir
Simeprevir
Grazoprevir
Elbasvir

Daclatasvir
Velpatasvir
Ombitasvir

Ledipasvir
Virmididine - (Under trial)
Antifungal Drugs

- **Membrane Active Antifungal Agents**

 - Squalene → Lanosterol → Ergosterol → Fungal cell mem
 - Squalene
 - 14 α-demethylase
 - Epoxidase
 - Cyp 2450
 - Terbinafine
 - Azoles
 - Polyene antibiotics
 - Amphotericin B + Ergosterol → Forms a pore in fungal cell
 - Act on fungal cell wall
 - Destroy fungus

 Amphotericin B
 - Usually given as a slow iv infusion
 - Very well distributed all over body
 - Poorly distributed in CNS

 ADR - Infusion related reaction (Fever, chills)
 - Nephrotoxicity (Dose limiting toxicity)
 - Hypokalemia
 - Hypomagnesemia
 - Anemia
 - Seizure

 To avoid Nephrotoxicity - Give Hydration

Newer formulation:
- ABCD (Colloid dispersion)
- ABLC (Lipid complex)
- Less systemic toxicity
Drug interaction - Be careful while using Amphotericin B with other nephrototoxic agents like -

- Aminoglycosides
- Vancomycin
- Cyclosporin.

Azoles + Amphotericin B: Mutually antagonistic

\[\text{Inhibit Ergosterol} \quad \text{No action on Ergosterol.} \]

Terbinafine - Squalene epoxidase inhibitor.

5-Flucytosine - Antimetabolite acting on fungal nucleus.

5 Flucytosine + Amphotericin B => Synergism.

Grasofulvin -
- Acting by inhibiting microtubule.
- Useful for dermatophytosis
- Orychomycosis.
- Given orally.
- Microosomal enzyme inducer
- Disulfiram like reaction.

Newer Antifungal - Echinocandins
eg: Caspofungin
- Micafungin
- Anidulafungin.

MOA - Acting on \(\beta-1,3 \)-glucan synthase inhibitor.

Uses - Candida & Aspergillosis.
Nikkomycin - Inhibit Chitin Synthesis
Useful for Candida & Aspergillosis.

amoebiasis

Lumen Amoebiasis
- Diloxanide furoate
 (Flutivate)
 Extraintestinal & Extra intestinal
- Nitazoxanide
 Use in Cryptosporidiosis
- Quinodochlor → Cause Subacute myelo optic neuropathy (SMO)

- Tofotinol

- Paromomycin (oral) → i.v. for kala-azar.
- Tetracyclines

Extraintestinal:
Chloroquine.

Both:
- Metro nimdazole
- Tinidazole
- Secnidazole (Single dose) - M/e GE - Nause, Vomitting
- Ornidazole
- Itraconidazole (less neurological ADR)
- Emetine
- Dehydroemetine.
Guinea Worm: For complete removal of worm
Doc - Niridazole.

Helminthiasis

Nematodes Ceptodes Nematodes
Doc - Praziquantel Doc - Praziquantel Doc - Albendazole

Except - Fasciola hepatica Except - Echinococcus Except - Ochoecera

Ova

Ivermectina

Albendazole (hepatotoxic) Strongyloides Scabies

W. bancrofti

Leishmaniasis

Kala-azar Cutaneous Mucocutaneous

For all forms Sodium Glucoconate

(Doc) Amphotericin B (in India)

Pentamidine (ENAC Helier)

Paromomycin Fluconazole Amphotericin B

Oral: Miltefosine Metronidazole

Sulfaquine
Trypanosomiasis.

African
- Sleeping sickness.
 T. gambiense
 & T. rhodesiense

South American
- Chagas de
 T. cruzi

DOC
- Benzimidazole
 Nifurtimox.

Early hemolymphatic stage
Suramin (doc)
Pentamidine

Late - CNS stage
Malarsoprol (doc)
Eflornithine

Anti-Malarial drug
Chloroquine (M/c)
 → Very large apparent Vol of 100-1000 L/kg.
Uses:
R - Rheumatoid Arthritis
E - Extra-intestinal Amebiasis
D - DLE (Discoid lupus erythematous)
L - Lepra reac
I - Infectious mononucleosis
P - Photogenic reac
M - Malarias
G - Giardiasis

- Safe in Pregnancy.
S/E → GI toxicity (Nausea & Vomiting)
CVS (Bradycardia, HTN)
Chronic therapy cause Bull’s eye maculopathy. Lives damage.

Mefloquine:
For infusion & prophylaxis of Malaria.
Long half-life.
Single oral dose.
S/E - Neuropsychosis.

If combine with Halofan, Quinine - Risk of QT prolongation.

HALOFANTRINE, LUMEFANTRINE:
Absorption ↑ in food.
Halofantrine - more Cardiotoxic.

Lumefantrine + Artemether ⇒ ACT

Primaquine
- Vivax curative
For G6PD deficiency → Cause hemolytic anemia.
Can in pregnancy.

Artemisinin:
Artemunate
Fast acting drug
Artemether
Short acting - Recurrence more
Arteether

For extending duration of action combine with Mefloquine.
Indications:

- Multidrug resistance Malaria
- Cerebral Malaria
- Not indicated for chemoprophylaxis of Malaria

S/E - GI toxicity (M/C)

CVS → QT prolongation, 1st degree AV block.

Hematology → Reversible leucopenia.

WHO approved Combiné therapies:

FDC = Artemether / lumefantrine

 Artesunate + amodiaquine

 Artesunate + SP

 Artesunate + Mefloquine

ACTs

Unsafe Antimalarial drug in Pregnancy:

Halofantrine

Tetracycline/ Doxycycline

Primiquine